The potential of multijunction perovskite solar cells
ACS Energy Letters American Chemical Society 2:10 (2017) 2506-2513
Abstract:
Metal halide perovskite semiconductors offer rapid, low-cost deposition of solar cell active layers with a wide range of band gaps, making them ideal candidates for multijunction solar cells. Here, we combine optical and electrical models using experimental inputs to evaluate the feasible performances of all-perovskite double-junction (2PJ), triple-junction (3PJ), and perovskite-perovskite-silicon triple-junction (2PSJ) solar cells. Using parameters and design constraints from the current state-of-the-art generation of perovskite solar cells, we find that 2PJs can feasibly approach 32% power conversion efficiency, 3PJs can reach 33%, and 2PSJs can surpass 35%. We also outline pathways to improve light harvesting and demonstrate that it is possible to raise the performances to 34%, 37%, and 39% for the three architectures. Additionally, we discuss important future directions of research. Finally, we perform energy yield modeling to demonstrate that the multijunction solar cells should not suffer from reduced operational performances due to discrepancies between the AM1.5G and real-world spectrum over the course of a year.Role of Microstructure in Oxygen Induced Photodegradation of Methylammonium Lead Triiodide Perovskite Films
Advanced Energy Materials Wiley 7:20 (2017)
Solar Cells: Role of Microstructure in Oxygen Induced Photodegradation of Methylammonium Lead Triiodide Perovskite Films (Adv. Energy Mater. 20/2017)
Advanced Energy Materials Wiley 7:20 (2017)
Consolidation of the optoelectronic properties of CH3NH3PbBr3 perovskite single crystals.
Nature Communications Springer Nature 8 (2017) 590
Abstract:
Ultralow trap densities, exceptional optical and electronic properties have been reported for lead halide perovskites single crystals; however, ambiguities in basic properties, such as the band gap, and the electronic defect densities in the bulk and at the surface prevail. Here, we synthesize single crystals of methylammonium lead bromide (CH3NH3PbBr3), characterise the optical absorption and photoluminescence and show that the optical properties of single crystals are almost identical to those of polycrystalline thin films. We observe significantly longer lifetimes and show that carrier diffusion plays a substantial role in the photoluminescence decay. Contrary to many reports, we determine that the trap density in CH3NH3PbBr3 perovskite single crystals is 1015 cm-3, only one order of magnitude lower than in the thin films. Our enhanced understanding of optical properties and recombination processes elucidates ambiguities in earlier reports, and highlights the discrepancies in the estimation of trap densities from electronic and optical methods.Metal halide perovskites for optoelectronic devices have been extensively studied in two forms: single-crystals or polycrystalline thin films. Using spectroscopic approaches, Wenger et al. show that polycrystalline thin films possess similar optoelectronic properties to single crystals.Monolithic wide band gap perovskite/perovskite tandem solar cells with organic recombination layers
Journal of Physical Chemistry C American Chemical Society 121:49 (2017) 27256-27262