A two layer electrode structure for improved Li ion diffusion and volumetric capacity in Li Ion batteries
Nano Energy Elsevier 31 (2016) 377-385
Abstract:
Nanomaterials with different morphologies were placed in discrete layers through the thickness of a negative electrode for a Li ion battery to exploit effectively the intrinsic energy storage capabilities of each nanomaterial morphology and to improve the overall dynamics of Li ion diffusion. The two layer electrode showed a combination of high volumetric capacity and rate capability that surpassed the performance of conventional randomly blended electrodes comprising the same nanomaterials. Local Li ion concentrations were measured through the electrode thickness and clearly showed the benefits of the layered structure over the alternatives. The two layer electrode was fabricated by a flexible and scalable suspension atomization and spray deposition technique with generic potential for improved layered electrodes in a wide range of applications.Cs$_2$InAgCl$_6$: A new lead-free halide double perovskite with direct band gap
(2016)
Towards Lead-free Perovskite Solar Cells
ACS Energy Letters American Chemical Society (2016)
Abstract:
Since the first reports of solar cells with power conversion efficiencies around 10% in 2012, the science and technology of perovskite photovoltaics has been progressing at an unprecedented rate. The current certified record efficiency of 22.1% makes perovskites the first solutionprocessable technology to outperform multicrystalline and thin-film silicon. For this technology to be deployed on a large scale, the two main challenges that need to be addressed are the material stability and the toxicity of lead. In particular, while lead is allowed in photovoltaic modules, it would be desirable to find alternatives which retained the unique optoelectronic properties of lead halide perovskites. Here we offer our perspective on the most exciting developments in the materials science of new halide perovskites, with an emphasis on alternatives to lead. After surveying recent developments of new perovskites and perovskite-related materials, we highlight the potential of halide double perovskites. This new family of compounds constitutes uncharted territory, and may offer a broad materials library for solar energy applications.Mechanism for rapid growth of organic-inorganic halide perovskite crystals
Nature Communications Nature Publishing Group 7 (2016) 13303
Abstract:
Optoelectronic devices based on hybrid halide perovskites have shown remarkable progress to high performance. However, despite their apparent success, there remain many open questions about their intrinsic properties. Single crystals are often seen as the ideal platform for understanding the limits of crystalline materials, and recent reports of rapid, high-temperature crystallization of single crystals should enable a variety of studies. Here we explore the mechanism of this crystallization and find that it is due to reversible changes in the solution where breaking up of colloids, and a change in the solvent strength, leads to supersaturation and subsequent crystallization. We use this knowledge to demonstrate a broader range of processing parameters and show that these can lead to improved crystal quality. Our findings are therefore of central importance to enable the continued advancement of perovskite optoelectronics and to the improved reproducibility through a better understanding of factors influencing and controlling crystallization.Perovskite-perovskite tandem photovoltaics with optimized bandgaps
Science American Association for the Advancement of Science (2016)