Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Synthesis and Investigation of the V-shaped Tröger's Base Derivatives as Hole-transporting Materials.

Chemistry, an Asian journal 11:14 (2016) 2049-2056

Authors:

Titas Braukyla, Nobuya Sakai, Maryte Daskeviciene, Vygintas Jankauskas, Egidijus Kamarauskas, Tadas Malinauskas, Henry J Snaith, Vytautas Getautis

Abstract:

V-shaped Tröger's base core has been investigated as a central linking unit in the synthesis of new charge-transporting materials for optoelectronic applications. The studied molecules have been synthesized in two steps from relatively inexpensive starting materials, and demonstrate high glass transition temperatures, good stability of the amorphous state, and comparatively high hole drift mobility (up to 0.011 cm(2)  V(-1)  s(-1) ).
More details from the publisher
More details
More details

Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment

Journal of Physical Chemistry Letters American Chemical Society 7:13 (2016) 2579-2585

Authors:

Marina R Filip, Samuel Hillman, Amir Abbas Haghighirad, Henry J Snaith, Feliciano Giustino

Abstract:

The recent discovery of lead-free halide double perovskites with band gaps in the visible represents an important step forward in the design of environmentally friendly perovskite solar cells. Within this new family of semiconductors, Cs2BiAgCl6 and Cs2BiAgBr6 are stable compounds crystallizing in the elpasolite structure. Following the recent computational discovery and experimental synthesis of these compounds, a detailed investigation of their electronic properties is warranted in order to establish their potential as optoelectronic materials. In this work, we perform many-body perturbation theory calculations and obtain high accuracy band gaps for both compounds. In addition, we report on the synthesis of Cs2BiAgBr6 single crystals, which are stable in ambient conditions. From our complementary theoretical and experimental analysis, we are able to assign the indirect character of the band gaps and obtain both experimental and theoretical band gaps of these novel semiconductors that are in close agreement.
More details from the publisher
Details from ORA
More details
More details

Spatially resolved studies of the phases and morphology of methylammonium and formamidinium lead tri-halide perovskites

(2016)

Authors:

K Galkowski, A Mitioglu, A Surrente, Z Yang, DK Maude, P Kossacki, GE Eperon, JT-W Wang, HJ Snaith, P Plochocka, RJ Nicholas
More details from the publisher

Electrochemical replication of self-assembled block copolymer nanostructures

Chapter in Electrochemical Nanofabrication: Principles and Applications: Second Edition, (2016) 59-111

Authors:

E Crossland, H Snaith, U Steiner
More details from the publisher

Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells.

ACS nano 10:6 (2016) 6029-6036

Authors:

Jongmin Choi, Seulki Song, Maximilian T Hörantner, Henry J Snaith, Taiho Park

Abstract:

An electron transporting layer (ETL) plays an important role in extracting electrons from a perovskite layer and blocking recombination between electrons in the fluorine-doped tin oxide (FTO) and holes in the perovskite layers, especially in planar perovskite solar cells. Dense TiO2 ETLs prepared by a solution-processed spin-coating method (S-TiO2) are mainly used in devices due to their ease of fabrication. Herein, we found that fatal morphological defects at the S-TiO2 interface due to a rough FTO surface, including an irregular film thickness, discontinuous areas, and poor physical contact between the S-TiO2 and the FTO layers, were inevitable and lowered the charge transport properties through the planar perovskite solar cells. The effects of the morphological defects were mitigated in this work using a TiO2 ETL produced from sputtering and anodization. This method produced a well-defined nanostructured TiO2 ETL with an excellent transmittance, single-crystalline properties, a uniform film thickness, a large effective area, and defect-free physical contact with a rough substrate that provided outstanding electron extraction and hole blocking in a planar perovskite solar cell. In planar perovskite devices, anodized TiO2 ETL (A-TiO2) increased the power conversion efficiency by 22% (from 12.5 to 15.2%), and the stabilized maximum power output efficiency increased by 44% (from 8.9 to 12.8%) compared with S-TiO2. This work highlights the importance of the ETL geometry for maximizing device performance and provides insights into achieving ideal ETL morphologies that remedy the drawbacks observed in conventional spin-coated ETLs.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 76
  • Page 77
  • Page 78
  • Page 79
  • Current page 80
  • Page 81
  • Page 82
  • Page 83
  • Page 84
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet