Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Dye Monolayers Used as the Hole Transporting Medium in Dye-Sensitized Solar Cells

Advanced Materials 27:39 (2015) 5889-5894

Authors:

D Moia, T Leijtens, N Noel, HJ Snaith, J Nelson, PRF Barnes

Abstract:

Dye-sensitized TiO2 can be used as the active layer of solar-cell devices without an additional hole-transporting material. In this architecture, holes are transported through the dye monolayer.
More details from the publisher

Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films

Advanced Functional Materials Wiley 25:39 (2015) 6218-6227

Authors:

Rebecca L Milot, Giles Eperon, Henry J Snaith, Michael Johnston, Laura Herz

Abstract:

The photoluminescence, transmittance, charge-carrier recombination dynamics, mobility, and diffusion length of CH3NH3PbI3 are investigated in the temperature range from 8 to 370 K. Profound changes in the optoelectronic properties of this prototypical photovoltaic material are observed across the two structural phase transitions occurring at 160 and 310 K. Drude-like terahertz photoconductivity spectra at all temperatures above 80 K suggest that charge localization effects are absent in this range. The monomolecular charge-carrier recombination rate generally increases with rising temperature, indicating a mechanism dominated by ionized impurity mediated recombination. Deduced activation energies Ea associated with ionization are found to increase markedly from the room-temperature tetragonal (Ea ≈ 20 meV) to the higher-temperature cubic (Ea ≈ 200 meV) phase adopted above 310 K. Conversely, the bimolecular rate constant decreases with rising temperature as charge-carrier mobility declines, while the Auger rate constant is highly phase specific, suggesting a strong dependence on electronic band structure. The charge-carrier diffusion length gradually decreases with rising temperature from about 3 μm at -93 °C to 1.2 μm at 67 °C but remains well above the optical absorption depth in the visible spectrum. These results demonstrate that there are no fundamental obstacles to the operation of cells based on CH3NH3PbI3 under typical field conditions.
More details from the publisher
Details from ORA
More details

Dye monolayers used as the hole transporting medium in dye-sensitized solar cells.

Advanced materials (Deerfield Beach, Fla.) 27:39 (2015) 5889-5894

Authors:

Davide Moia, Tomas Leijtens, Nakita Noel, Henry J Snaith, Jenny Nelson, Piers RF Barnes

Abstract:

Dye-sensitized TiO2 can be used as the active layer of solar-cell devices without an additional hole-transporting material. In this architecture, holes are transported through the dye monolayer.
More details from the publisher
More details
More details

Mapping Electric Field‐Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films

Advanced Energy Materials Wiley 5:20 (2015)

Authors:

Tomas Leijtens, Eric T Hoke, Giulia Grancini, Daniel J Slotcavage, Giles E Eperon, James M Ball, Michele De Bastiani, Andrea R Bowring, Nicola Martino, Konrad Wojciechowski, Michael D McGehee, Henry J Snaith, Annamaria Petrozza
More details from the publisher
More details

Modeling Anomalous Hysteresis in Perovskite Solar Cells.

The journal of physical chemistry letters 6:19 (2015) 3808-3814

Authors:

Stephan van Reenen, Martijn Kemerink, Henry J Snaith

Abstract:

Organic-inorganic lead halide perovskites are distinct from most other semiconductors because they exhibit characteristics of both electronic and ionic motion. Accurate understanding of the optoelectronic impact of such properties is important to fully optimize devices and be aware of any limitations of perovskite solar cells and broader optoelectronic devices. Here we use a numerical drift-diffusion model to describe device operation of perovskite solar cells. To achieve hysteresis in the modeled current-voltage characteristics, we must include both ion migration and electronic charge traps, serving as recombination centers. Trapped electronic charges recombine with oppositely charged free electronic carriers, of which the density depends on the bias-dependent ion distribution in the perovskite. Our results therefore show that reduction of either the density of mobile ionic species or carrier trapping at the perovskite interface will remove the adverse hysteresis in perovskite solar cells. This gives a clear target for ongoing research effort and unifies previously conflicting experimental observations and theories.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 85
  • Page 86
  • Page 87
  • Page 88
  • Current page 89
  • Page 90
  • Page 91
  • Page 92
  • Page 93
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet