Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Enhanced Amplified Spontaneous Emission in Perovskites using a Flexible Cholesteric Liquid Crystal Reflector

Nano letters American Chemical Society 15:8 (2015) 4935-4941

Authors:

Samuel D Stranks, Simon M Wood, Konrad Wojciechowski, Felix Deschler, Michael Saliba, Hitesh Khandelwal, Jay B Patel, Steve J Elston, Laura Herz, Michael Johnston, Albertus PHJ Schenning, Michael G Debije, Moritz Riede, Stephen M Morris, Henry J Snaith

Abstract:

Organic-inorganic perovskites are highly promising solar cell materials with laboratory-based power conversion efficiencies already matching those of established thin film technologies. Their exceptional photovoltaic performance is in part attributed to the presence of efficient radiative recombination pathways, thereby opening up the possibility of efficient light-emitting devices. Here, we demonstrate optically pumped amplified spontaneous emission (ASE) at 780 nm from a 50 nm-thick film of CH3NH3PbI3 perovskite that is sandwiched within a cavity composed of a thin-film (∼7 μm) cholesteric liquid crystal (CLC) reflector and a metal back-reflector. The threshold fluence for ASE in the perovskite film is reduced by at least two orders of magnitude in the presence of the CLC reflector, which results in a factor of two reduction in threshold fluence compared to previous reports. We consider this to be due to improved coupling of the oblique and out-of-plane modes that are reflected into the bulk in addition to any contributions from cavity modes. Furthermore, we also demonstrate enhanced ASE on flexible reflectors and discuss how improvements in the quality factor and reflectivity of the CLC layers could lead to single-mode lasing using CLC reflectors. Our work opens up the possibility of fabricating widely wavelength-tunable "mirror-less" single-mode lasers on flexible substrates, which could find use in applications such as flexible displays and friend or foe identification.
More details from the publisher
Details from ORA
More details
More details

ChemInform Abstract: Formation of Thin Films of Organi—Inorganic Perovskites for High‐Efficiency Solar Cells

ChemInform Wiley 46:21 (2015) no-no

Authors:

Samuel D Stranks, Pabitra K Nayak, Wei Zhang, Thomas Stergiopoulos, Henry J Snaith
More details from the publisher

Efficient room temperature aqueous Sb2S3 synthesis for inorganic-organic sensitized solar cells with 5.1% efficiencies.

Chemical communications (Cambridge, England) 51:41 (2015) 8640-8643

Authors:

Karl C Gödel, Yong Chan Choi, Bart Roose, Aditya Sadhanala, Henry J Snaith, Sang Il Seok, Ullrich Steiner, Sandeep K Pathak

Abstract:

Sb2S3 sensitized solar cells are a promising alternative to devices employing organic dyes. The manufacture of Sb2S3 absorber layers is however slow and cumbersome. Here, we report the modified aqueous chemical bath synthesis of Sb2S3 absorber layers for sensitized solar cells. Our method is based on the hydrolysis of SbCl3 to complex antimony ions decelerating the reaction at ambient conditions, in contrast to the usual low temperature deposition protocol. This simplified deposition route allows the manufacture of sensitized mesoporous-TiO2 solar cells with power conversion efficiencies up to η = 5.1%. Photothermal deflection spectroscopy shows that the sub-bandgap trap-state density is lower in Sb2S3 films deposited with this method, compared to standard deposition protocols.
More details from the publisher
More details
More details

Employing PEDOT as the p-Type Charge Collection Layer in Regular Organic-Inorganic Perovskite Solar Cells.

The journal of physical chemistry letters 6:9 (2015) 1666-1673

Authors:

Jiewei Liu, Sandeep Pathak, Thomas Stergiopoulos, Tomas Leijtens, Konrad Wojciechowski, Stefan Schumann, Nina Kausch-Busies, Henry J Snaith

Abstract:

Organic-inorganic halide perovskite solar cells have recently emerged as high-performance photovoltaic devices with low cost, promising for affordable large-scale energy production, with laboratory cells already exceeding 20% power conversion efficiency (PCE). To date, a relatively expensive organic hole-conducting molecule with low conductivity, namely spiro-OMeTAD (2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine) 9,9'- spirobifluorene), is employed widely to achieve highly efficient perovskite solar cells. Here, we report that by replacing spiro-OMeTAD with much cheaper and highly conductive poly(3,4-ethylenedioxythiophene) (PEDOT) we can achieve PCE of up to 14.5%, with PEDOT cast from a toluene based ink. However, the stabilized power output of the PEDOT-based devices is only 6.6%, in comparison to 9.4% for the spiro-OMeTAD-based cells. We deduce that accelerated recombination is the cause for this lower stabilized power output and postulate that reduced levels of p-doping are required to match the stabilized performance of Spiro-OMeTAD. The entirely of the materials employed in the perovskite solar cell are now available at commodity scale and extremely inexpensive.
More details from the publisher
More details
More details

Metal-halide perovskites for photovoltaic and light-emitting devices.

Nature nanotechnology 10:5 (2015) 391-402

Authors:

Samuel D Stranks, Henry J Snaith

Abstract:

Metal-halide perovskites are crystalline materials originally developed out of scientific curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to over 20% in just four years of academic research. Here, we review the rapid progress in perovskite solar cells, as well as their promising use in light-emitting devices. In particular, we describe the broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and we highlight the properties that have delivered light-emitting diodes and lasers. We discuss key thermal and operational stability challenges facing perovskites, and give an outlook of future research avenues that might bring perovskite technology to commercialization.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 90
  • Page 91
  • Page 92
  • Page 93
  • Current page 94
  • Page 95
  • Page 96
  • Page 97
  • Page 98
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet