Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Optical Description of Mesostructured Organic-Inorganic Halide Perovskite Solar Cells.

The journal of physical chemistry letters 6:1 (2015) 48-53

Authors:

Miguel Anaya, Gabriel Lozano, Mauricio E Calvo, Wei Zhang, Michael B Johnston, Henry J Snaith, Hernán Míguez

Abstract:

Herein we describe both theoretically and experimentally the optical response of solution-processed organic-inorganic halide perovskite solar cells based on mesostructured scaffolds. We develop a rigorous theoretical model using a method based on the propagation of waves in layered media, which allows visualizing the way in which light is spatially distributed across the device and serves to quantify the fraction of light absorbed by each medium comprising the cell. The discrimination between productive and parasitic absorption yields an accurate determination of the internal quantum efficiency. State-of-the-art devices integrating mesoporous scaffolds infiltrated with perovskite are manufactured and characterized to support the calculations. This combined experimental and theoretical analysis provides a rational understanding of the optical behavior of perovskite cells and can be beneficial for the judicious design of devices with improved performance. Notably, our model justifies the presence of a solid perovskite capping layer in all of the highest efficiency perovskite solar cells based on thinner mesoporous scaffolds.
More details from the publisher
More details
More details

The real TiO2/HTM interface of solid-state dye solar cells: role of trapped states from a multiscale modelling perspective.

Nanoscale 7:3 (2015) 1136-1144

Authors:

Alessio Gagliardi, Matthias Auf der Maur, Desiree Gentilini, Fabio di Fonzo, Agnese Abrusci, Henry J Snaith, Giorgio Divitini, Caterina Ducati, Aldo Di Carlo

Abstract:

In this paper we present a multiscale simulation of charge transport in a solid-state dye-sensitized solar cell, where the real morphology between TiO2 and the hole transport material is included. The geometry of the interface is obtained from an electron tomography measurement and imported in a simulation software. Charge distribution, electric field and current densities are computed using the drift-diffusion model. We use this approach to investigate the electrostatic effect of trap states at the interface between the electron and hole transport materials. The simulations show that when the trapped electrons are not screened by external additives, the dynamics of holes is perturbed. Holes accumulate at the interface, enhancing recombination and reducing cell performance.
More details from the publisher
More details
More details

Direct observation of an inhomogeneous chlorine distribution in CH 3 NH 3 PbI 3−x Cl x layers: surface depletion and interface enrichment

Energy & Environmental Science Royal Society of Chemistry (RSC) 8:5 (2015) 1609-1615

Authors:

David E Starr, Golnaz Sadoughi, Evelyn Handick, Regan G Wilks, Jan H Alsmeier, Leonard Köhler, Mihaela Gorgoi, Henry J Snaith, Marcus Bär
More details from the publisher
More details

Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates

Journal of Materials Chemistry A Royal Society of Chemistry (RSC) 3:17 (2015) 9141-9145

Authors:

Joel Troughton, Daniel Bryant, Konrad Wojciechowski, Matthew J Carnie, Henry Snaith, David A Worsley, Trystan M Watson
More details from the publisher

Optical properties and limiting photocurrent of thin-film perovskite solar cells

Energy and Environmental Science Royal Society of Chemistry 8:2 (2014) 602-609

Authors:

James M Ball, Samuel D Stranks, Maximilian T Hörantner, Sven Hüttner, Wei Zhang, Edward JW Crossland, Ivan Ramirez, Moritz Riede, Michael B Johnston, Richard H Friend, Henry J Snaith

Abstract:

Metal-halide perovskite light-absorbers have risen to the forefront of photovoltaics research offering the potential to combine low-cost fabrication with high power-conversion efficiency. Much of the development has been driven by empirical optimisation strategies to fully exploit the favourable electronic properties of the absorber layer. To build on this progress, a full understanding of the device operation requires a thorough optical analysis of the device stack, providing a platform for maximising the power conversion efficiency through a precise determination of parasitic losses caused by coherence and absorption in the non-photoactive layers. Here we use an optical model based on the transfer-matrix formalism for analysis of perovskite-based planar heterojunction solar cells using experimentally determined complex refractive index data. We compare the modelled properties to experimentally determined data, and obtain good agreement, revealing that the internal quantum efficiency in the solar cells approaches 100%. The modelled and experimental dependence of the photocurrent on incidence angle exhibits only a weak variation, with very low reflectivity losses at all angles, highlighting the potential for useful power generation over a full daylight cycle.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 95
  • Page 96
  • Page 97
  • Page 98
  • Current page 99
  • Page 100
  • Page 101
  • Page 102
  • Page 103
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet