Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Towards long-term photostability of solid-state dye sensitized solar cells

Advanced Energy Materials 4:8 (2014)

Authors:

SK Pathak, A Abate, T Leijtens, DJ Hollman, J Teuscher, L Pazos, P Docampo, U Steiner, HJ Snaith

Abstract:

The solid-state dye-sensitized solar cell (DSSC) was introduced to overcome inherent manufacturing and instability issues of the electrolyte-based DSSC and progress has been made to deliver high photovoltaic efficiencies at low cost. However, despite 15 years research and development, there still remains no clear demonstration of long-term stability. Here, solid-state DSSCs are subjected to the severe aging conditions of continuous illumination at an elevated temperature. A fast deterioration in performance is observed for devices encapsulated in the absence of oxygen. The photovoltaic performance recovers when re-exposed to air. This reversible behavior is attributed to three related processes: i) the creation of light and oxygen sensitive electronic shunting paths between TiO2 and the top metal electrode, ii) increased recombination at the TiO2/organic interface, and iii) the creation of deep electron traps that reduce the photocurrent. The device deterioration is remedied by the formation of an insulating alumino-silicate shell around the TiO2 nanocrystals, which reduces interfacial recombination, and the introduction of an insulating mesoporous SiO2 buffer layer between the top electrode and TiO2, which acts as a permanent insulating barrier between the TiO2 and the metal electrode, preventing shunting. Encapsulated solid-state dye-sensitized solar cells (ssDSSCs) show a reversible and quick deterioration in performance while aging under inert atmosphere. This is attributed to the activation of deep traps and the change in Schottky barrier at the TiO2 surface. This is remedied by forming an insulating alumino-silicate "shell" around the TiO2 nanocrystals, and by introducing an insulating mesoporous SiO2 "buffer layer" between the top electrode and TiO2. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
More details from the publisher

Multiscale Simulation of Solid State Dye Sensitized Solar Cells Including Morphology Effects

Institute of Electrical and Electronics Engineers (IEEE) (2014) 1-4

Authors:

Alessio Gagliardi, Matthias Auf der Maur, Fabio Di Fonzo, Agnese Abrusci, Henry Snaith, Giorgio Divitini, Caterina Ducati, Aldo Di Carlo
More details
More details from the publisher

Lessons learned: from dye-sensitized solar cells to all-solid-state hybrid devices.

Advanced materials (Deerfield Beach, Fla.) 26:24 (2014) 4013-4030

Authors:

Pablo Docampo, Stefan Guldin, Tomas Leijtens, Nakita K Noel, Ullrich Steiner, Henry J Snaith

Abstract:

The field of solution-processed photovoltaic cells is currently in its second spring. The dye-sensitized solar cell is a widely studied and longstanding candidate for future energy generation. Recently, inorganic absorber-based devices have reached new record efficiencies, with the benefits of all-solid-state devices. In this rapidly changing environment, this review sheds light on recent developments in all-solid-state solar cells in terms of electrode architecture, alternative sensitizers, and hole-transporting materials. These concepts are of general applicability to many next-generation device platforms.
More details from the publisher
More details
More details

Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells.

Nano letters 14:6 (2014) 3247-3254

Authors:

Antonio Abate, Michael Saliba, Derek J Hollman, Samuel D Stranks, Konrad Wojciechowski, Roberto Avolio, Giulia Grancini, Annamaria Petrozza, Henry J Snaith

Abstract:

Organic-inorganic halide perovskites, such as CH3NH3PbX3 (X = I(-), Br(-), Cl(-)), are attracting growing interest to prepare low-cost solar cells that are capable of converting sunlight to electricity at the highest efficiencies. Despite negligible effort on enhancing materials' purity or passivation of surfaces, high efficiencies have already been achieved. Here, we show that trap states at the perovskite surface generate charge accumulation and consequent recombination losses in working solar cells. We identify that undercoordinated iodine ions within the perovskite structure are responsible and make use of supramolecular halogen bond complexation to successfully passivate these sites. Following this strategy, we demonstrate solar cells with maximum power conversion efficiency of 15.7% and stable power output over 15% under constant 0.81 V forward bias in simulated full sunlight. The surface passivation introduces an important direction for future progress in perovskite solar cells.
More details from the publisher
More details
More details

Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx

Energy and Environmental Science Royal Society of Chemistry 7:7 (2014) 2269-2275

Authors:

Christian Wehrenfennig, Mingzhen Liu, Henry J Snaith, Michael J Johnston, Laura M Herz

Abstract:

We determine high charge-carrier mobilities ≥ 33 cm2 V−1 s−1 and bi-molecular recombination rates about five orders of magnitude below the prediction of Langevin's model for vapour-deposited CH3NH3PbI3−xClx using ultrafast THz spectroscopy. At charge-carrier densities below ∼1017 cm−3 intrinsic diffusion lengths are shown to approach 3 microns, limited by slow mono-molecular decay processes.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 101
  • Page 102
  • Page 103
  • Page 104
  • Current page 105
  • Page 106
  • Page 107
  • Page 108
  • Page 109
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet