Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

An Organic “Donor‐Free” Dye with Enhanced Open‐Circuit Voltage in Solid‐State Sensitized Solar Cells

Advanced Energy Materials Wiley 4:13 (2014)

Authors:

Antonio Abate, Miquel Planells, Derek J Hollman, Samuel D Stranks, Annamaria Petrozza, Ajay Ram Srimath Kandada, Yana Vaynzof, Sandeep K Pathak, Neil Robertson, Henry J Snaith
More details from the publisher
More details

Bright light-emitting diodes based on organometal halide perovskite

Nature Nanotechnology Springer Nature 9:9 (2014) 687-692

Authors:

Zhi-Kuang Tan, Reza Saberi Moghaddam, May Ling Lai, Pablo Docampo, Ruben Higler, Felix Deschler, Michael Price, Aditya Sadhanala, Luis M Pazos, Dan Credgington, Fabian Hanusch, Thomas Bein, Henry J Snaith, Richard H Friend
More details from the publisher
More details
More details

Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites

ACS Nano American Chemical Society 8:10 (2014) 9815-9821

Authors:

Nakita Noel, A Abate, Sam Stranks, ES Parrott, VM Burlakov, Alain Goriely, Henry Snaith

Abstract:

Organic-inorganic metal halide perovskites have recently emerged as a top contender to be used as an absorber material in highly efficient, low-cost photovoltaic devices. Solution-processed semiconductors tend to have a high density of defect states and exhibit a large degree of electronic disorder. Perovskites appear to go against this trend, and despite relatively little knowledge of the impact of electronic defects, certified solar-to-electrical power conversion efficiencies of up to 17.9% have been achieved. Here, through treatment of the crystal surfaces with the Lewis bases thiophene and pyridine, we demonstrate significantly reduced nonradiative electron-hole recombination within the CH(3)NH(3)PbI(3-x)Cl(x) perovskite, achieving photoluminescence lifetimes which are enhanced by nearly an order of magnitude, up to 2 μs. We propose that this is due to the electronic passivation of under-coordinated Pb atoms within the crystal. Through this method of Lewis base passivation, we achieve power conversion efficiencies for solution-processed planar heterojunction solar cells enhanced from 13% for the untreated solar cells to 15.3% and 16.5% for the thiophene and pyridine-treated solar cells, respectively.
More details from the publisher
Details from ORA
More details
More details

Polystyrene Templated Porous Titania Wells for Quantum Dot Heterojunction Solar Cells

ACS Applied Materials & Interfaces American Chemical Society (ACS) 6:16 (2014) 14247-14252

Authors:

Cheng Cheng, Michael M Lee, Nakita K Noel, Gareth M Hughes, James M Ball, Hazel E Assender, Henry J Snaith, Andrew AR Watt
More details from the publisher
More details
More details

Radiative efficiency of lead iodide based perovskite solar cells

Scientific Reports Springer Nature 4 (2014) 6071

Authors:

K Tvingstedt, O Malinkiewicz, A Baumann, C Deibel, Henry Snaith, V Dyakonov, HJ Bolink

Abstract:

The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 102
  • Page 103
  • Page 104
  • Page 105
  • Current page 106
  • Page 107
  • Page 108
  • Page 109
  • Page 110
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet