Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Microsecond Carrier Lifetimes, Controlled p-Doping, and Enhanced Air Stability in Low-Bandgap Metal Halide Perovskites.

ACS energy letters 4:9 (2019) 2301-2307

Authors:

Alan R Bowman, Matthew T Klug, Tiarnan AS Doherty, Michael D Farrar, Satyaprasad P Senanayak, Bernard Wenger, Giorgio Divitini, Edward P Booker, Zahra Andaji-Garmaroudi, Stuart Macpherson, Edoardo Ruggeri, Henning Sirringhaus, Henry J Snaith, Samuel D Stranks

Abstract:

Mixed lead-tin halide perovskites have sufficiently low bandgaps (∼1.2 eV) to be promising absorbers for perovskite-perovskite tandem solar cells. Previous reports on lead-tin perovskites have typically shown poor optoelectronic properties compared to neat lead counterparts: short photoluminescence lifetimes (<100 ns) and low photoluminescence quantum efficiencies (<1%). Here, we obtain films with carrier lifetimes exceeding 1 μs and, through addition of small quantities of zinc iodide to the precursor solutions, photoluminescence quantum efficiencies under solar illumination intensities of 2.5%. The zinc additives also substantially enhance the film stability in air, and we use cross-sectional chemical mapping to show that this enhanced stability is because of a reduction in tin-rich clusters. By fabricating field-effect transistors, we observe that the introduction of zinc results in controlled p-doping. Finally, we show that zinc additives also enhance power conversion efficiencies and the stability of solar cells. Our results demonstrate substantially improved low-bandgap perovskites for solar cells and versatile electronic applications.
More details from the publisher
More details
More details

Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics

Energy and Environmental Science Royal Society of Chemistry (2019)

Authors:

Nakita Noel, Habisreutinger, A Pellaroque, F Pulvirenti, Bernard Wenger, F Zhang, Yen-Hung Lin, OG Reid, J Leisen, Y Zhang, S Barlow, Marder, A Kahn, HJ Snaith, CB Arnold, BP Rand

Abstract:

We demonstrate a method for controlled p-doping of the halide perovskite surface using molecular dopants, resulting in reduced non-radiative recombination losses and improved device performance.

More details from the publisher
Details from ORA
More details

Impurity tracking enables enhanced control and reproducibility of hybrid perovskite vapour deposition

ACS Applied Materials and Interfaces American Chemical Society 11:32 (2019) 28851-28857

Authors:

Juliane Borchert, I Levchuk, Lavina Snoek, Mathias Rothmann, Renée Haver, Henry Snaith, CJ Brabec, Laura Herz, Michael Johnston

Abstract:

Metal halide perovskite semiconductors have the potential to enable low-cost, flexible and efficient solar cells for a wide range of applications. Physical vapour deposition by co-evaporation of precursors is a method which results in very smooth and pin-hole-free perovskite thin films and allows excellent control over film thickness and composition. However, for a deposition method to become industrially scalable, reproducible process control and high device yields are essential. Unfortunately, to date the control and reproducibility of evaporating organic precursors such as methylammonium iodide (MAI) has proved extremely challenging. We show that the established method of controlling the evaporation-rate of MAI with quartz micro balances (QMBs) is critically sensitive to the concentration of the impurities MAH2PO3 and MAH2PO2 that are usually present in MAI after synthesis. Therefore, controlling the deposition rate of MAI with QMBs is unreliable since the concentration of such impurities typically varies from MAI batch-to-batch and even during the course of a deposition. However once reliable control of MAI deposition is achieved, we find that the presence of precursor impurities during perovskite deposition does not degrade solar cell performance. Our results indicate that as long as precursor deposition rates are well controlled, physical vapour deposition will allow high solar cell device yields even if the purity of precursors change from run to run.
More details from the publisher
Details from ORA
More details
More details

Planar perovskite solar cells with long-term stability using ionic liquid additives

Nature Springer Nature 571:7764 (2019) 245-250

Authors:

S Bai, P Da, C Li, Z Wang, Y Zhongcheng, F Fan, K Maciej, L Xianjie, Nobuya Sakai, JT-W Wang, S Huetter, S Bucheler, M Fahlman, F Gao, Henry Snaith

Abstract:

Solar cells based on metal halide perovskites are one of the most promising photovoltaic technologies1,2,3,4. Over the past few years, the long-term operational stability of such devices has been greatly improved by tuning the composition of the perovskites5,6,7,8,9, optimizing the interfaces within the device structures10,11,12,13, and using new encapsulation techniques14,15. However, further improvements are required in order to deliver a longer-lasting technology. Ion migration in the perovskite active layer—especially under illumination and heat—is arguably the most difficult aspect to mitigate16,17,18. Here we incorporate ionic liquids into the perovskite film and thence into positive–intrinsic–negative photovoltaic devices, increasing the device efficiency and markedly improving the long-term device stability. Specifically, we observe a degradation in performance of only around five per cent for the most stable encapsulated device under continuous simulated full-spectrum sunlight for more than 1,800 hours at 70 to 75 degrees Celsius, and estimate that the time required for the device to drop to eighty per cent of its peak performance is about 5,200 hours. Our demonstration of long-term operational, stable solar cells under intense conditions is a key step towards a reliable perovskite photovoltaic technology.
More details from the publisher
Details from ORA
More details
More details

High Responsivity and Response Speed Single‐Layer Mixed‐Cation Lead Mixed‐Halide Perovskite Photodetectors Based on Nanogap Electrodes Manufactured on Large‐Area Rigid and Flexible Substrates

Advanced Functional Materials Wiley 29:28 (2019)

Authors:

Dimitra G Georgiadou, Yen‐Hung Lin, Jongchul Lim, Sinclair Ratnasingham, Martyn A McLachlan, Henry J Snaith, Thomas D Anthopoulos
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • Current page 46
  • Page 47
  • Page 48
  • Page 49
  • Page 50
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet