Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells.

Nature communications (2015)

Authors:

W Zhang, M Saliba, DT Moore, SK Pathak, MT Hörantner, T Stergiopoulos, SD Stranks, Giles Eperon, JA Alexander-Webber, A Abate, A Sadhanala, S Yao, Y Chen, RH Friend, LA Estroff, U Wiesner, Henry Snaith

Abstract:

To date, there have been a plethora of reports on different means to fabricate organic-inorganic metal halide perovskite thin films; however, the inorganic starting materials have been limited to halide-based anions. Here we study the role of the anions in the perovskite solution and their influence upon perovskite crystal growth, film formation and device performance. We find that by using a non-halide lead source (lead acetate) instead of lead chloride or iodide, the perovskite crystal growth is much faster, which allows us to obtain ultrasmooth and almost pinhole-free perovskite films by a simple one-step solution coating with only a few minutes annealing. This synthesis leads to improved device performance in planar heterojunction architectures and answers a critical question as to the role of the anion and excess organic component during crystallization. Our work paves the way to tune the crystal growth kinetics by simple chemistry.
More details from the publisher
Details from ORA
More details
More details

Hole-transport materials with greatly-differing redox potentials give efficient TiO2-[CH3NH3][PbX3] perovskite solar cells

Physical Chemistry Chemical Physics 17:4 (2015) 2335-2338

Authors:

A Abate, M Planells, DJ Hollman, V Barthi, S Chand, HJ Snaith, N Robertson

Abstract:

Two diacetylide-triphenylamine hole-transport materials (HTM) with varying redox potential have been applied in planar junction TiO2-[CH3NH3]PbI3-xClx solar cells leading to high power-conversion efficiencies up to 8.8%. More positive oxidation potential of the HTM gives higher VOC and lower JSC illustrating the role of matching energy levels, however both HTMs gave efficient cells despite a difference of 0.44 V in their redox potentials. This journal is
More details from the publisher

Hole-transport materials with greatly-differing redox potentials give efficient TiO 2 –[CH 3 NH 3 ][PbX 3 ] perovskite solar cells

Physical Chemistry Chemical Physics Royal Society of Chemistry (RSC) 17:4 (2015) 2335-2338

Authors:

Antonio Abate, Miquel Planells, Derek J Hollman, Vishal Barthi, Suresh Chand, Henry J Snaith, Neil Robertson
More details from the publisher
More details
More details

The real TiO 2 /HTM interface of solid-state dye solar cells: role of trapped states from a multiscale modelling perspective

Nanoscale Royal Society of Chemistry (RSC) 7:3 (2015) 1136-1144

Authors:

Alessio Gagliardi, Matthias Auf der Maur, Desiree Gentilini, Fabio di Fonzo, Agnese Abrusci, Henry J Snaith, Giorgio Divitini, Caterina Ducati, Aldo Di Carlo
More details from the publisher
More details
More details

Optical Description of Mesostructured Organic–Inorganic Halide Perovskite Solar Cells

The Journal of Physical Chemistry Letters American Chemical Society (ACS) 6:1 (2015) 48-53

Authors:

Miguel Anaya, Gabriel Lozano, Mauricio E Calvo, Wei Zhang, Michael B Johnston, Henry J Snaith, Hernán Míguez
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 96
  • Page 97
  • Page 98
  • Page 99
  • Current page 100
  • Page 101
  • Page 102
  • Page 103
  • Page 104
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet