Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Steric engineering of metal-halide perovskites with tunable optical band gaps

Nature Communications Springer Nature 5:1 (2014) 5757

Authors:

Marina R Filip, Giles E Eperon, Henry J Snaith, Feliciano Giustino
More details from the publisher
More details
More details

Enhanced Hole Extraction in Perovskite Solar Cells Through Carbon Nanotubes

The Journal of Physical Chemistry Letters American Chemical Society (ACS) 5:23 (2014) 4207-4212

Authors:

Severin N Habisreutinger, Tomas Leijtens, Giles E Eperon, Samuel D Stranks, Robin J Nicholas, Henry J Snaith
More details from the publisher
More details
More details

Optical properties and limiting photocurrent of thin-film perovskite solar cells

Energy and Environmental Science Royal Society of Chemistry 8:2 (2014) 602-609

Authors:

James M Ball, Samuel D Stranks, Maximilian T Hörantner, Sven Hüttner, Wei Zhang, Edward JW Crossland, Ivan Ramirez, Moritz Riede, Michael B Johnston, Richard H Friend, Henry J Snaith

Abstract:

Metal-halide perovskite light-absorbers have risen to the forefront of photovoltaics research offering the potential to combine low-cost fabrication with high power-conversion efficiency. Much of the development has been driven by empirical optimisation strategies to fully exploit the favourable electronic properties of the absorber layer. To build on this progress, a full understanding of the device operation requires a thorough optical analysis of the device stack, providing a platform for maximising the power conversion efficiency through a precise determination of parasitic losses caused by coherence and absorption in the non-photoactive layers. Here we use an optical model based on the transfer-matrix formalism for analysis of perovskite-based planar heterojunction solar cells using experimentally determined complex refractive index data. We compare the modelled properties to experimentally determined data, and obtain good agreement, revealing that the internal quantum efficiency in the solar cells approaches 100%. The modelled and experimental dependence of the photocurrent on incidence angle exhibits only a weak variation, with very low reflectivity losses at all angles, highlighting the potential for useful power generation over a full daylight cycle.
More details from the publisher
Details from ORA
More details

The impact of the crystallization processes on the structural and optical properties of hybrid perovskite films for photovoltaics

journal of physical chemistry letters American Chemical Society 5:21 (2014) 3836-3842

Authors:

Giulia Grancini, Sergio Marras, Mirko Prato, Cinzia Giannini, Claudio Quarti, Filippo De Angelis, Michele De Bastiani, Giles Eperon, Henry J Snaith, Liberato Manna, Annamaria Petrozza

Abstract:

We investigate the relationship between structural and optical properties of organo-lead mixed halide perovskite films as a function of the crystallization mechanism. For methylammonium lead tri-iodide, the organic cations rearrange within the inorganic cage, moving from crystals grown in a mesoporous scaffold to larger, oriented crystals grown on a flat substrate. This reduces the strain felt by the bonds forming the cage and affects the motion of the organic cation in it, influencing the electronic transition at the onset of the optical absorption spectrum of the semiconductor. Moreover, we demonstrate that in mixed-halide perovskite, though Cl(-) ions are not present in a detectable concentration in the unit cell, they drive the crystallization dynamics. This induces a preferential order during crystallization, from a molecular, i.e., organic-inorganic moieties arrangement, to a nano-mesoscopic level, i.e., larger crystals with anisotropic shape. Finally, we show that while Cl is mainly expelled from flat films made of large crystals, in the presence of an oxide mesoporous scaffold they are partially retained in the composite.
More details from the publisher
Details from ORA
More details
More details

A Transparent Conductive Adhesive Laminate Electrode for High‐Efficiency Organic‐Inorganic Lead Halide Perovskite Solar Cells

Advanced Materials Wiley 26:44 (2014) 7499-7504

Authors:

Daniel Bryant, Peter Greenwood, Joel Troughton, Maarten Wijdekop, Mathew Carnie, Matthew Davies, Konrad Wojciechowski, Henry J Snaith, Trystan Watson, David Worsley
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 97
  • Page 98
  • Page 99
  • Page 100
  • Current page 101
  • Page 102
  • Page 103
  • Page 104
  • Page 105
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet