Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Device Performance of Emerging Photovoltaic Materials (Version 2)

Authors:

Osbel Almora, Derya Baran, Guillermo C Bazan, Christian Berger, Carlos I Cabrera, Kylie R Catchpole, Sule Erten-Ela, Fei Guo, Jens Hauch, Anita WY Ho-Baillie, T Jesper Jacobsson, Rene AJ Janssen, Thomas Kirchartz, Nikos Kopidakis, Yongfang Li, Maria A Loi, Richard R Lunt, Xavier Mathew, Michael D McGehee, Jie Min, David B Mitzi, Mohammad K Nazeeruddin, Jenny Nelson, Ana F Nogueira, Ulrich W Paetzold, Nam-Gyu Park, Barry P Rand, Uwe Rau, Henry J Snaith, Eva Unger, Lídice Vaillant-Roca, Hin-Lap Yip, Christoph J Brabec
More details from the publisher

Device Performance of Emerging Photovoltaic Materials (Version 2)

Authors:

Osbel Almora, Derya Baran, Guillermo C Bazan, Christian Berger, Carlos I Cabrera, Kylie R Catchpole, Sule Erten-Ela, Fei Guo, Jens Hauch, Anita WY Ho-Baillie, T Jesper Jacobsson, Rene AJ Janssen, Thomas Kirchartz, Nikos Kopidakis, Yongfang Li, Maria A Loi, Richard R Lunt, Xavier Mathew, Michael D McGehee, Jie Min, David B Mitzi, Mohammad K Nazeeruddin, Jenny Nelson, Ana F Nogueira, Ulrich W Paetzold, Nam-Gyu Park, Barry P Rand, Uwe Rau, Henry J Snaith, Eva Unger, Lídice Vaillant-Roca, Hin-Lap Yip, Christoph J Brabec
More details from the publisher

Disentangling Degradation Pathways of Narrow Bandgap Lead-Tin Perovskite Material and Photovoltaic Devices

Authors:

Florine Rombach, Akash Dasgupta, Manuel Kober-Czerny, James Ball, Joel Smith, Heon Jin, Michael Farrar, Henry Snaith
More details from the publisher

Exposing binding-favourable facets of perovskites for tandem solar cells

Energy & Environmental Science Royal Society of Chemistry

Authors:

Junke Wang, Shuaifeng Hu, Zehua Chen, Zhongcheng Yuan, Pei Zhao, Akash Dasgupta, Fengning Yang, Jin Yao, Minh Anh Truong, Gunnar Kusch, Esther Hung, Nick Schipper, Laura Bellini, Guus Aalbers, Zonghao Liu, Rachel Oliver, Atsushi Wakamiya, René Janssen, Henry Snaith

Abstract:

Improved understanding of heterojunction interfaces has enabled multijunction photovoltaic devices to achieve power conversion efficiencies that exceed the detailed-balance limit for single-junctions. For wide-bandgap perovskites, however, the pronounced energy loss across the heterojunctions of the active and charge transport layers impedes multijunction devices from reaching their full efficiency potential. Here we find that for polycrystalline perovskite films with mixed-halide compositions, the crystal termination—a factor influencing the reactivity and density of surface sites—plays a crucial role in interfacial passivation for wide-bandgap perovskites. We demonstrate that by templating the growth of polycrystalline perovskite films toward a preferred (100) facet, we can reduce the density of deep-level trap states and enhance the binding of modification ligands. This leads to a much-improved heterojunction interface, resulting in open-circuit voltages of 1.38 V for 1.77-eV single-junction perovskite solar cells. In addition, monolithic all-perovskite double-junction solar cells achieve open-circuit voltage values of up to 2.22 V, with maximum power point tracking efficiencies reaching 28.6% and 27.7% at 0.25 and 1.0 cm2 cell areas, respectively, along with improved operational and thermal stability at 85 °C. This work provides universally applicable insights into the crystalline facet-favourable surface modification of perovskite films, advancing their performance in optoelectronic applications.
Details from ORA
More details from the publisher

Reporting Device Performance of Emerging Photovoltaic Materials (Version 1)

Authors:

Osbel Almora, Derya Baran, Guillermo C Bazan, Carlos I Cabrera, Kylie R Catchpole, Sule Erten-Ela, Fei Guo, Jens Hauch, Anita WY Ho-Baillie, T Jesper Jacobsson, Rene AJ Janssen, Thomas Kirchartz, Nikos Kopidakis, Yongfang Li, Maria A Loi, Richard R Lunt, Xavier Mathew, Michael D Mcgehee, Jie Min, David B Mitzi, Mohammad K Nazeeruddin, Jenny Nelson, Ana F Nogueira, Ulrich W Paetzold, Nam-Gyu Park, Barry P Rand, Uwe Rau, Henry J Snaith, Eva Unger, Lídice Vaillant-Roca, Hin-Lap Yip, Christoph J Brabec
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 134
  • Page 135
  • Page 136
  • Page 137
  • Page 138
  • Page 139
  • Page 140
  • Current page 141
  • Page 142
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet