Carbon nanotubes in perovskite solar cells
Advanced Energy Materials Wiley 7:10 (2016) 601839
Abstract:
The remarkable optoelectronic properties of metal halide perovskite absorbers have, in the past years, made the perovskite solar cell one of the most promising emerging photovoltaic technologies. The charge collecting layers are essential parts of this type of solar cell. Carbon nanotubes have emerged as a potential candidate to take on this role. Equipped with a range of highly beneficial properties including excellent charge transport characteristics, chemical inertness, as well as mechanical robustness, carbon nanotubes are able to both efficiently extract photogenerated charges, and improve the resilience and stability of a perovskite solar cell. In this Research News article we give a concise overview of the current state-of-the-art of perovskite solar cells in which carbon nanotubes are incorporated as a charge conduction layer.Perovskite Solar Cells
Chapter in Photovoltaic Solar Energy, Wiley (2016) 277-291
Optoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystals
Journal of Materials Chemistry A Royal Society of Chemistry 5:3 (2016) 1192-1200
Abstract:
Single crystals of Cu2ZnSnS4 (CZTS) have been grown by iodine vapor transport with and without addition of NaI. Crystals with tin-rich copper-poor and with zinc-rich copper-poor stoichiometries were obtained. The crystals were characterized by single crystal X-ray diffraction, energy-dispersive X-ray spectroscopy, photocurrent spectroscopy and electroreflectance spectroscopy using electrolyte contacts as well as by spectroscopic ellipsometry, Raman spectroscopy and photoluminescence spectroscopy (PL)/decay. Near-resonance Raman spectra indicate that the CZTS crystals adopt the kesterite structure with near-equilibrium residual disorder. The corrected external quantum efficiency of the p-type crystals measured by photocurrent spectroscopy approaches 100% close to the bandgap energy, indicating efficient carrier collection. The bandgap of the CZTS crystals estimated from the external quantum efficiency spectrum measured using an electrolyte contact was found to be 1.64–1.68 eV. An additional sub-bandgap photocurrent response (Urbach tail) was attributed to sub bandgap defect states. The room temperature PL of the crystals was attributed to radiative recombination via tail states, with lifetimes in the nanosecond range. At high excitation intensities, the PL spectrum also showed evidence of direct band to band transitions at ∼1.6 eV with a shorter decay time. Electrolyte electroreflectance spectra and spectra of the third derivative of the optical dielectric constant in the bandgap region were fitted to two optical transitions at 1.71 and 1.81 eV suggesting a larger valence band splitting than predicted theoretically. The high values of the EER broadening parameters (192 meV) indicate residual disorder consistent with the existence of tail states.Reproducible planar heterojunction solar cells based on one-step solution-processed methylammonium lead halide perovskites
Chemistry of Materials American Chemical Society 29:1 (2016) 462-473
Abstract:
Metal halide perovskites have been demonstrated as one of the most promising materials for low-cost and high-performance photovoltaic applications. However, due to the susceptible crystallization process of perovskite films on planar substrates and the high sensitivity of the physical and optoelectronic nature of the internal interfaces within the devices, researchers in different laboratories still experience poor reproducibility in fabricating efficient perovskite solar cells with planar heterojunction device structures. In this methods paper, we present detailed information on the reagents, equipment, and procedures for the fabrication of planar perovskite solar cells in both “regular” n-i-p and “inverted” p-i-n architectures based on one-step solution-processed methylammonium lead triiodide (MAPbI3) perovskite films. We discuss key parameters affecting the crystallization of perovskite and the device interfaces. This methods paper will provide a guideline for the reproducible fabrication of planar heterojunction solar cells based on MAPbI3perovskite films. We believe that the shared experience on MA-based perovskite films and planar solar cells will be also useful for the optimization process of perovskites with varied compositions and other emerging perovskite-based optoelectronic devices.Room-temperature atomic layer deposition of Al2 O3 : Impact on efficiency, stability and surface properties in perovskite solar cells
ChemSusChem Wiley 9:24 (2016) 3401-3406