Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Hole-transport materials with greatly-differing redox potentials give efficient TiO 2 –[CH 3 NH 3 ][PbX 3 ] perovskite solar cells

Physical Chemistry Chemical Physics Royal Society of Chemistry (RSC) 17:4 (2015) 2335-2338

Authors:

Antonio Abate, Miquel Planells, Derek J Hollman, Vishal Barthi, Suresh Chand, Henry J Snaith, Neil Robertson
More details from the publisher
More details
More details

The real TiO 2 /HTM interface of solid-state dye solar cells: role of trapped states from a multiscale modelling perspective

Nanoscale Royal Society of Chemistry (RSC) 7:3 (2015) 1136-1144

Authors:

Alessio Gagliardi, Matthias Auf der Maur, Desiree Gentilini, Fabio di Fonzo, Agnese Abrusci, Henry J Snaith, Giorgio Divitini, Caterina Ducati, Aldo Di Carlo
More details from the publisher
More details
More details

Optical Description of Mesostructured Organic–Inorganic Halide Perovskite Solar Cells

The Journal of Physical Chemistry Letters American Chemical Society (ACS) 6:1 (2015) 48-53

Authors:

Miguel Anaya, Gabriel Lozano, Mauricio E Calvo, Wei Zhang, Michael B Johnston, Henry J Snaith, Hernán Míguez
More details from the publisher
More details
More details

Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells

Materials Horizons Royal Society of Chemistry 2:3 (2015) 315-322

Authors:

Ye Zhang, Mingzhen Liu, Giles Eperon, Tomas C Leijtens, David McMeekin, Michael Saliba, Wei Zhang, Michele de Bastiani, Annamaria Petrozza, Laura Herz, Michael Johnston, Hong Lin, Henry J Snaith

Abstract:

High-efficiency perovskite solar cells typically employ an organic–inorganic metal halide perovskite material as light absorber and charge transporter, sandwiched between a p-type electron-blocking organic hole-transporting layer and an n-type hole-blocking electron collection titania compact layer. Some device configurations also include a thin mesoporous layer of TiO2 or Al2O3 which is infiltrated and capped with the perovskite absorber. Herein, we demonstrate that it is possible to fabricate planar and mesoporous perovskite solar cells devoid of an electron selective hole-blocking titania compact layer, which momentarily exhibit power conversion efficiencies (PCEs) of over 13%. This performance is however not sustained and is related to the previously observed anomalous hysteresis in perovskite solar cells. The “compact layer-free” meso-superstructured perovskite devices yield a stabilised PCE of only 2.7% while the compact layer-free planar heterojunction devices display no measurable steady state power output when devoid of an electron selective contact. In contrast, devices including the titania compact layer exhibit stabilised efficiency close to that derived from the current voltage measurements. We propose that under forward bias the perovskite diode becomes polarised, providing a beneficial field, allowing accumulation of positive and negative space charge near the contacts, which enables more efficient charge extraction. This provides the required built-in potential and selective charge extraction at each contact to temporarily enable efficient operation of the perovskite solar cells even in the absence of charge selective n- and p-type contact layers. The polarisation of the material is consistent with long range migration and accumulation of ionic species within the perovskite to the regions near the contacts. When the external field is reduced under working conditions, the ions can slowly diffuse away from the contacts redistributing throughout the film, reducing the field asymmetry and the effectiveness of the operation of the solar cells. We note that in light of recent publications showing high efficiency in devices devoid of charge selective contacts, this work reaffirms the absolute necessity to measure and report the stabilised power output under load when characterizing perovskite solar cells.
More details from the publisher
Details from ORA
More details

Efficient, semitransparent neutral-colored solar cells based on microstructured formamidinium lead trihalide perovskite.

Journal of Physical Chemistry Letters American Chemical Society 6:1 (2015) 129-138

Authors:

Giles E Eperon, Daniel Bryant, Joel Troughton, Samuel D Stranks, Michael Johnston, Trystan Watson, David A Worsley, Henry J Snaith

Abstract:

Efficient, neutral-colored semitransparent solar cells are of commercial interest for incorporation into the windows and surfaces of buildings and automobiles. Here, we report on semitransparent perovskite solar cells that are both efficient and neutral-colored, even in full working devices. Using the microstructured architecture previously developed, we achieve higher efficiencies by replacing methylammonium lead iodide perovskite with formamidinium lead iodide. Current-voltage hysteresis is also much reduced. Furthermore, we apply a novel transparent cathode to the devices, enabling us to fabricate neutral-colored semitransparent full solar cells for the first time. Such devices demonstrate over 5% power conversion efficiency for average visible transparencies of almost 30%, retaining impressive color-neutrality. This makes these devices the best-performing single-junction neutral-colored semitransparent solar cells to date. These microstructured perovskite solar cells are shown to have a significant advantage over silicon solar cells in terms of performance at high incident angles of sunlight, making them ideal for building integration.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 95
  • Page 96
  • Page 97
  • Page 98
  • Current page 99
  • Page 100
  • Page 101
  • Page 102
  • Page 103
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet