Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Understanding the Degradation of Methylenediammonium and Its Role in Phase-Stabilizing Formamidinium Lead Triiodide.

Journal of the American Chemical Society American Chemical Society (ACS) 145:18 (2023) 10275-10284

Authors:

Elisabeth A Duijnstee, Benjamin M Gallant, Philippe Holzhey, Dominik J Kubicki, Silvia Collavini, Bernd K Sturdza, Harry C Sansom, Joel Smith, Matthias J Gutmann, Santanu Saha, Murali Gedda, Mohamad I Nugraha, Manuel Kober-Czerny, Chelsea Xia, Adam D Wright, Yen-Hung Lin, Alexandra J Ramadan, Andrew Matzen, Esther Y-H Hung, Seongrok Seo, Suer Zhou, Jongchul Lim, Thomas D Anthopoulos, Marina R Filip, Michael B Johnston

Abstract:

Formamidinium lead triiodide (FAPbI<sub>3</sub>) is the leading candidate for single-junction metal-halide perovskite photovoltaics, despite the metastability of this phase. To enhance its ambient-phase stability and produce world-record photovoltaic efficiencies, methylenediammonium dichloride (MDACl<sub>2</sub>) has been used as an additive in FAPbI<sub>3</sub>. MDA<sup>2+</sup> has been reported as incorporated into the perovskite lattice alongside Cl<sup>-</sup>. However, the precise function and role of MDA<sup>2+</sup> remain uncertain. Here, we grow FAPbI<sub>3</sub> single crystals from a solution containing MDACl<sub>2</sub> (FAPbI<sub>3</sub>-M). We demonstrate that FAPbI<sub>3</sub>-M crystals are stable against transformation to the photoinactive δ-phase for more than one year under ambient conditions. Critically, we reveal that MDA<sup>2+</sup> is not the direct cause of the enhanced material stability. Instead, MDA<sup>2+</sup> degrades rapidly to produce ammonium and methaniminium, which subsequently oligomerizes to yield hexamethylenetetramine (HMTA). FAPbI<sub>3</sub> crystals grown from a solution containing HMTA (FAPbI<sub>3</sub>-H) replicate the enhanced α-phase stability of FAPbI<sub>3</sub>-M. However, we further determine that HMTA is unstable in the perovskite precursor solution, where reaction with FA<sup>+</sup> is possible, leading instead to the formation of tetrahydrotriazinium (THTZ-H<sup>+</sup>). By a combination of liquid- and solid-state NMR techniques, we show that THTZ-H<sup>+</sup> is selectively incorporated into the bulk of both FAPbI<sub>3</sub>-M and FAPbI<sub>3</sub>-H at ∼0.5 mol % and infer that this addition is responsible for the improved α-phase stability.
More details from the publisher
More details
More details
More details

Prospects for tin-containing halide perovskite photovoltaics

Precision Chemistry American Chemical Society 1:2 (2023) 69-82

Authors:

Shuaifeng Hu, Joel A Smith, Henry J Snaith, Atsushi Wakamiya

Abstract:

Tin-containing metal halide perovskites have enormous potential as photovoltaics, both in narrow band gap mixed tin–lead materials for all-perovskite tandems and for lead-free perovskites. The introduction of Sn(II), however, has significant effects on the solution chemistry, crystallization, defect states, and other material properties in halide perovskites. In this perspective, we summarize the main hurdles for tin-containing perovskites and highlight successful attempts made by the community to overcome them. We discuss important research directions for the development of these materials and propose some approaches to achieve a unified understanding of Sn incorporation. We particularly focus on the discussion of charge carrier dynamics and nonradiative losses at the interfaces between perovskite and charge extraction layers in p-i-n cells. We hope these insights will aid the community to accelerate the development of high-performance, stable single-junction tin-containing perovskite solar cells and all-perovskite tandems.
More details from the publisher
Details from ORA
More details
More details

Characterising halide perovskite crystallisation pathways using in situ GIWAXS

Fundacio Scito (2023)

Authors:

Joel Smith, Pietro Caprioglio, Benjamin Gallant, Margherita Taddei, Saqlain Choudhary, David Ginger, Henry Snaith
More details from the publisher

Understanding operation and improving the performance of metal halide perovskite solar cells

Fundacio Scito (2023)
More details from the publisher

Probing the local electronic structure in metal halide perovskites through cobalt substitution

Small Methods Wiley 7:6 (2023) 2300095

Authors:

Amir Haghighirad, M Klug, Liam Duffy, Junyie Liu, Arzhang Ardavan, Gerrit van der Laan, Thorsten Hesjedal, Henry Snaith

Abstract:

Owing to the unique chemical and electronic properties arising from 3d‐electrons, substitution with transition metal ions is one of the key routes for engineering new functionalities into materials. While this approach has been used extensively in complex metal oxide perovskites, metal halide perovskites have largely resisted facile isovalent substitution. In this work, it is demonstrated that the substitution of Co2+ into the lattice of methylammonium lead triiodide imparts magnetic behavior to the material while maintaining photovoltaic performance at low concentrations. In addition to comprehensively characterizing its magnetic properties, the Co2+ ions themselves are utilized as probes to sense the local electronic environment of Pb in the perovskite, thereby revealing the nature of their incorporation into the material. A comprehensive understanding of the effect of transition metal incorporation is provided, thereby opening the substitution gateway for developing novel functional perovskite materials and devices for future technologies.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Current page 18
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet