Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Ligand-engineered bandgap stability in mixed-halide perovskite LEDs

Nature Springer Nature 591:7848 (2021) 72-77

Authors:

Yasser Hassan, Jong Hyun Park, Michael L Crawford, Aditya Sadhanala, Jeongjae Lee, James C Sadighian, Edoardo Mosconi, Ravichandran Shivanna, Eros Radicchi, Mingyu Jeong, Changduk Yang, Hyosung Choi, Sung Heum Park, Myoung Hoon Song, Filippo De Angelis, Cathy Y Wong, Richard H Friend, Bo Ram Lee, Henry J Snaith

Abstract:

Lead halide perovskites are promising semiconductors for light-emitting applications because they exhibit bright, bandgap-tunable luminescence with high colour purity1,2. Photoluminescence quantum yields close to unity have been achieved for perovskite nanocrystals across a broad range of emission colours, and light-emitting diodes with external quantum efficiencies exceeding 20 per cent—approaching those of commercial organic light-emitting diodes—have been demonstrated in both the infrared and the green emission channels1,3,4. However, owing to the formation of lower-bandgap iodide-rich domains, efficient and colour-stable red electroluminescence from mixed-halide perovskites has not yet been realized5,6. Here we report the treatment of mixed-halide perovskite nanocrystals with multidentate ligands to suppress halide segregation under electroluminescent operation. We demonstrate colour-stable, red emission centred at 620 nanometres, with an electroluminescence external quantum efficiency of 20.3 per cent. We show that a key function of the ligand treatment is to ‘clean’ the nanocrystal surface through the removal of lead atoms. Density functional theory calculations reveal that the binding between the ligands and the nanocrystal surface suppresses the formation of iodine Frenkel defects, which in turn inhibits halide segregation. Our work exemplifies how the functionality of metal halide perovskites is extremely sensitive to the nature of the (nano)crystalline surface and presents a route through which to control the formation and migration of surface defects. This is critical to achieve bandgap stability for light emission and could also have a broader impact on other optoelectronic applications—such as photovoltaics—for which bandgap stability is required.
More details from the publisher
Details from ORA
More details
More details

Device Performance of Emerging Photovoltaic Materials (Version 1)

Advanced Energy Materials Wiley 11:11 (2021)

Authors:

Osbel Almora, Derya Baran, Guillermo C Bazan, Christian Berger, Carlos I Cabrera, Kylie R Catchpole, Sule Erten‐Ela, Fei Guo, Jens Hauch, Anita WY Ho‐Baillie, T Jesper Jacobsson, Rene AJ Janssen, Thomas Kirchartz, Nikos Kopidakis, Yongfang Li, Maria A Loi, Richard R Lunt, Xavier Mathew, Michael D McGehee, Jie Min, David B Mitzi, Mohammad K Nazeeruddin, Jenny Nelson, Ana F Nogueira, Ulrich W Paetzold, Nam‐Gyu Park, Barry P Rand, Uwe Rau, Henry J Snaith, Eva Unger, Lídice Vaillant‐Roca, Hin‐Lap Yip, Christoph J Brabec
More details from the publisher
More details

Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurements.

ACS energy letters 6:3 (2021) 1087-1094

Authors:

Vincent M Le Corre, Elisabeth A Duijnstee, Omar El Tambouli, James M Ball, Henry J Snaith, Jongchul Lim, L Jan Anton Koster

Abstract:

Space-charge-limited current (SCLC) measurements have been widely used to study the charge carrier mobility and trap density in semiconductors. However, their applicability to metal halide perovskites is not straightforward, due to the mixed ionic and electronic nature of these materials. Here, we discuss the pitfalls of SCLC for perovskite semiconductors, and especially the effect of mobile ions. We show, using drift-diffusion (DD) simulations, that the ions strongly affect the measurement and that the usual analysis and interpretation of SCLC need to be refined. We highlight that the trap density and mobility cannot be directly quantified using classical methods. We discuss the advantages of pulsed SCLC for obtaining reliable data with minimal influence of the ionic motion. We then show that fitting the pulsed SCLC with DD modeling is a reliable method for extracting mobility, trap, and ion densities simultaneously. As a proof of concept, we obtain a trap density of 1.3 × 1013 cm-3, an ion density of 1.1 × 1013 cm-3, and a mobility of 13 cm2 V-1 s-1 for a MAPbBr3 single crystal.
More details from the publisher
More details
More details

Crystallographic, optical, and electronic properties of the Cs2AgBi1-xInxBr6 double perovskite: understanding the fundamental photovoltaic efficiency challenges

ACS Energy Letters American Chemical Society 6:3 (2021) 1073-1081

Authors:

Laura Schade, Suhas Mahesh, George Volonakis, Marios Zacharias, Bernard Wenger, Felix Schmidt, Sameer Vajjala Kesava, Dharmalingam Prabhakaran, Mojtaba Abdi-Jalebi, Markus Lenz, Feliciano Giustino, Giulia Longo, Paolo Radaelli, Henry Snaith

Abstract:

We present a crystallographic and optoelectronic study of the double perovskite Cs2AgBi1–xInxBr6. From structural characterization we determine that the indium cation shrinks the lattice and shifts the cubic-to-tetragonal phase transition point to lower temperatures. The absorption onset is shifted to shorter wavelengths upon increasing the indium content, leading to wider band gaps, which we rationalize through first-principles band structure calculations. Despite the unfavorable band gap shift, we observe an enhancement in the steady-state photoluminescence intensity, and n-i-p photovoltaic devices present short-circuit current greater than that of neat Cs2AgBiBr6 devices. In order to evaluate the prospects of this material as a solar absorber, we combine accurate absorption measurements with thermodynamic modeling and identify the fundamental limitations of this system. Provided radiative efficiency can be increased and the choice of charge extraction layers are specifically improved, this material could prove to be a useful wide band gap solar absorber.
More details from the publisher
Details from ORA
More details

Halide segregation in mixed-halide perovskites: influence of A-site cations

ACS Energy Letters American Chemical Society 6:2 (2021) 799-808

Authors:

Alexander Knight, Anna Juliane Borchert, Robert DJ Oliver, Jay Patel, Paolo G Radaelli, Henry Snaith, Michael B Johnston, Laura M Herz

Abstract:

Mixed-halide perovskites offer bandgap tunability essential for multijunction solar cells; however, a detrimental halide segregation under light is often observed. Here we combine simultaneous in situ photoluminescence and X-ray diffraction measurements to demonstrate clear differences in compositional and optoelectronic changes associated with halide segregation in MAPb(Br0.5I0.5)3 and FA0.83Cs0.17Pb(Br0.4I0.6)3 films. We report evidence for low-barrier ionic pathways in MAPb(Br0.5I0.5)3, which allow for the rearrangement of halide ions in localized volumes of perovskite without significant compositional changes to the bulk material. In contrast, FA0.83Cs0.17Pb(Br0.4I0.6)3 lacks such low-barrier ionic pathways and is, consequently, more stable against halide segregation. However, under prolonged illumination, it exhibits a considerable ionic rearrangement throughout the bulk material, which may be triggered by an initial demixing of A-site cations, altering the composition of the bulk perovskite and reducing its stability against halide segregation. Our work elucidates links between composition, ionic pathways, and halide segregation, and it facilitates the future engineering of phase-stable mixed-halide perovskites.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • Current page 35
  • Page 36
  • Page 37
  • Page 38
  • Page 39
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet