Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

CsI-antisolvent adduct formation in all-inorganic metal halide perovskites

Advanced Energy Materials Wiley 10:9 (2020) 1903365

Authors:

Taylor Moot, Ashley Marshall, Lance Wheeler, Severin Habisreutinger, Tracey Schloemer, Caleb C Boyd, Desislava Dikova, Greg Pach, Michael McGehee, Abhijit Hazarika, Henry Snaith, Joseph Luther

Abstract:

The excellent optoelectronic properties demonstrated by hybrid organic/inorganic metal halide perovskites are all predicated on precisely controlling the exact nucleation and crystallization dynamics that occur during film formation. In general, high‐performance thin films are obtained by a method commonly called solvent engineering (or antisolvent quench) processing. The solvent engineering method removes excess solvent, but importantly leaves behind solvent that forms chemical adducts with the lead‐halide precursor salts. These adduct‐based precursor phases control nucleation and the growth of the polycrystalline domains. There has not yet been a comprehensive study comparing the various antisolvents used in different perovskite compositions containing cesium. In addition, there have been no reports of solvent engineering for high efficiency in all‐inorganic perovskites such as CsPbI3. In this work, inorganic perovskite composition CsPbI3 is specifically targeted and unique adducts formed between CsI and precursor solvents and antisolvents are found that have not been observed for other A‐site cation salts. These CsI adducts control nucleation more so than the PbI2–dimethyl sulfoxide (DMSO) adduct and demonstrate how the A‐site plays a significant role in crystallization. The use of methyl acetate (MeOAc) in this solvent engineering approach dictates crystallization through the formation of a CsI–MeOAc adduct and results in solar cells with a power conversion efficiency of 14.4%.
More details from the publisher
Details from ORA
More details

Trap states, electric fields, and phase segregation in mixed-halide perovskite photovoltaic devices

Advanced Energy Materials Wiley 10:9 (2020) 1903488

Authors:

Alexander Knight, Jay Patel, Henry Snaith, Michael Johnston, Laura Herz

Abstract:

Mixed-halide perovskites are essential for use in all-perovskite or perovskite–silicon tandem solar cells due to their tunable bandgap. However, trap states and halide segregation currently present the two main challenges for efficient mixed-halide perovskite technologies. Here photoluminescence techniques are used to study trap states and halide segregation in full mixed-halide perovskite photovoltaic devices. This work identifies three distinct defect species in the perovskite material: a charged, mobile defect that traps charge-carriers in the perovskite, a charge-neutral defect that induces halide segregation, and a charged, mobile defect that screens the perovskite from external electric fields. These three defects are proposed to be MA+ interstitials, crystal distortions, and halide vacancies and/or interstitials, respectively. Finally, external quantum efficiency measurements show that photoexcited charge-carriers can be extracted from the iodide-rich low-bandgap regions of the phase-segregated perovskite formed under illumination, suggesting the existence of charge-carrier percolation pathways through grain boundaries where phase-segregation may occur.
More details from the publisher
Details from ORA
More details

A universal solution processed interfacial bilayer enabling ohmic contact in organic and hybrid optoelectronic devices

Energy & Environmental Science Royal Society of Chemistry (RSC) 13:1 (2020) 268-276

Authors:

Joel Troughton, Marios Neophytou, Nicola Gasparini, Akmaral Seitkhan, Furkan H Isikgor, Xin Song, Yen-Hung Lin, Tong Liu, Hendrik Faber, Emre Yengel, Jan Kosco, Marek F Oszajca, Benjamin Hartmeier, Michael Rossier, Norman A Lüchinger, Leonidas Tsetseris, Henry J Snaith, Stefaan De Wolf, Thomas D Anthopoulos, Iain McCulloch, Derya Baran
More details from the publisher

Toward understanding space-charge limited current measurements on metal halide perovskites

ACS Energy Letters American Chemical Society 5 (2020) 376-384

Authors:

Elisabeth Duijnstee, JM Ball, VM Le Corre, LJA Koster, HJ Snaith, J Lim
More details from the publisher
Details from ORA
More details

Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures

Nature Energy Springer Nature 5:1 (2020) 35-49

Authors:

Mark V Khenkin, Eugene A Katz, Antonio Abate, Giorgio Bardizza, Joseph J Berry, Christoph Brabec, Francesca Brunetti, Vladimir Bulović, Quinn Burlingame, Aldo Di Carlo, Rongrong Cheacharoen, Yi-Bing Cheng, Alexander Colsmann, Stephane Cros, Konrad Domanski, Michał Dusza, Christopher J Fell, Stephen R Forrest, Yulia Galagan, Diego Di Girolamo, Michael Grätzel, Anders Hagfeldt, Elizabeth von Hauff, Harald Hoppe, Jeff Kettle, Hans Köbler, Marina S Leite, Shengzhong Frank Liu, Yueh-Lin Loo, Joseph M Luther, Chang-Qi Ma, Morten Madsen, Matthieu Manceau, Muriel Matheron, Michael McGehee, Rico Meitzner, Mohammad Khaja Nazeeruddin, Ana Flavia Nogueira, Çağla Odabaşı, Anna Osherov, Nam-Gyu Park, Matthew O Reese, Francesca De Rossi, Michael Saliba, Ulrich S Schubert, Henry J Snaith, Samuel D Stranks, Wolfgang Tress, Pavel A Troshin, Vida Turkovic, Sjoerd Veenstra, Iris Visoly-Fisher, Aron Walsh, Trystan Watson, Haibing Xie, Ramazan Yıldırım, Shaik Mohammed Zakeeruddin, Kai Zhu, Monica Lira-Cantu
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • Current page 43
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet