Binary solvent system used to fabricate fully annealing-free perovskite solar cells
Advanced Energy Materials Wiley 13:11 (2023) 2203468
Abstract:
High temperature post-deposition annealing of hybrid lead halide perovskite thin films—typically lasting at least 10 min—dramatically limits the maximum roll-to-roll coating speed, which determines solar module manufacturing costs. While several approaches for “annealing-free” perovskite solar cells (PSCs) have been demonstrated, many are of limited feasibility for scalable fabrication. Here, this work has solvent-engineered a high vapor pressure solvent mixture of 2-methoxy ethanol and tetrahydrofuran to deposit highly crystalline perovskite thin-films at room temperature using gas-quenching to remove the volatile solvents. Using this approach, this work demonstrates p-i-n devices with an annealing-free MAPbI3 perovskite layer achieving stabilized power conversion efficiencies (PCEs) of up to 18.0%, compared to 18.4% for devices containing an annealed perovskite layer. This work then explores the deposition of self-assembled molecules as the hole-transporting layer without annealing. This work finally combines the methods to create fully annealing-free devices having stabilized PCEs of up to 17.1%. This represents the state-of-the-art for annealing-free fabrication of PSCs with a process fully compatible with roll-to-roll manufacture.A Universal Perovskite Nanocrystal Ink for High‐Performance Optoelectronic Devices
Advanced Materials Wiley 35:8 (2023) e2209486
Passivation strategies for mitigating defect challenges in halide perovskite light-emitting diodes
Joule Elsevier 7:2 (2023) 272-308
Synergistic surface modification of tin-lead perovskite solar cells
Advanced Materials Wiley 35:9 (2023) 2208320
Abstract:
Interfaces in thin-film photovoltaics play a pivotal role in determining device efficiency and longevity. Herein, we study the top surface treatment of mixed tin-lead (∼1.26 eV) halide perovskite films for p-i-n solar cells. We are able to promote charge extraction by treating the perovskite surface with piperazine. This compound reacts with the organic cations at the perovskite surface, modifying the surface structure and tuning the interfacial energy level alignment. In addition, the combined treatment with C<sub>60</sub> pyrrolidine tris-acid (CPTA) reduces hysteresis and leads to efficiencies up to 22.7%, with open-circuit voltage values reaching 0.90 V, ∼92% of the radiative limit for the band gap of this material. The modified cells also show superior stability, with unencapsulated cells retaining 96% of their initial efficiency after >2000 hours of storage in N<sub>2</sub> and encapsulated cells retaining 90% efficiency after >450 hours of storage in air. Intriguingly, CPTA preferentially binds to Sn<sup>2+</sup> sites at film surface over Pb<sup>2+</sup> due to the energetically favoured exposure of the former, according to first-principles calculations. This work provides new insights into the surface chemistry of perovskite films in terms of their structural, electronic, and defect characteristics and we use this knowledge to fabricate state-of-the-art solar cells.Organic solvent free PbI2 recycling from perovskite solar cells using hot water
Journal of Hazardous Materials Elsevier 447 (2023) 130829
Abstract:
Perovskite solar cells represent an emerging and highly promising renewable energy technology. However, the most efficient perovskite solar cells critically depend on the use of lead. This represents a possible environmental concern potentially limiting the technologies’ commercialization. Here, we demonstrate a facile recycling process for PbI2, the most common lead-based precursor in perovskite absorber material. The process uses only hot water to effectively extract lead from synthetic precursor mixes, plastic- and glass-based perovskites (92.6 – 100% efficiency after two extractions). When the hot extractant is cooled, crystalline PbI2 in high purity (> 95.9%) precipitated with a high yield: from glass-based perovskites, the first cycle of extraction / precipitation was sufficient to recover 94.4 ± 5.6% of Pb, whereas a second cycle yielded another 10.0 ± 5.2% Pb, making the recovery quantitative. The solid extraction residue remaining is consequently deprived of metals and may thus be disposed as non-hazardous waste. Therefore, exploiting the highly temperature-dependent solubility of PbI2 in water provides a straightforward, easy to implement way to efficiently extract lead from PSC at the end-of-life and deposit the extraction residues in a cost-effective manner, mitigating the potential risk of lead leaching at the perovskites’ end-of-life.