Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Device Performance of Emerging Photovoltaic Materials (Version 2)

Advanced Energy Materials Wiley 11:48 (2021)

Authors:

Osbel Almora, Derya Baran, Guillermo C Bazan, Christian Berger, Carlos I Cabrera, Kylie R Catchpole, Sule Erten‐Ela, Fei Guo, Jens Hauch, Anita WY Ho‐Baillie, T Jesper Jacobsson, Rene AJ Janssen, Thomas Kirchartz, Nikos Kopidakis, Yongfang Li, Maria A Loi, Richard R Lunt, Xavier Mathew, Michael D McGehee, Jie Min, David B Mitzi, Mohammad K Nazeeruddin, Jenny Nelson, Ana F Nogueira, Ulrich W Paetzold, Nam‐Gyu Park, Barry P Rand, Uwe Rau, Henry J Snaith, Eva Unger, Lídice Vaillant‐Roca, Hin‐Lap Yip, Christoph J Brabec
More details from the publisher
More details

Role of Electronic States and Their Coupling on Radiative Losses of Open-Circuit Voltage in Organic Photovoltaics.

ACS applied materials & interfaces 13:50 (2021) 60279-60287

Authors:

Nakul Jain, Ramakant Sharma, Suhas Mahesh, Dhanashree Moghe, Henry J Snaith, Seunghyup Yoo, Dinesh Kabra

Abstract:

Voltage losses (ΔVOC) are a crucial limitation for the performance of excitonic organic solar cells (OSCs) and can be estimated by two approaches─the radiative limit and the Marcus charge-transfer (MCT) model. In this work, we show that combining the radiative limit and MCT models for voltage loss calculations provides useful insights into the physics of emerging efficient OSCs. We studied nine different donor-acceptor systems, wherein the power conversion efficiency ranges from 4.4 to 14.1% and ΔVOC varies from 0.55 to 0.95 V. For these state-of-the-art devices, we calculated the ΔVOC using the radiative limit and the MCT model. Furthermore, we combined both models to derive new insights on the origin of radiative voltage losses (ΔVrad) in OSCs. We quantified the contribution in ΔVrad due to the bulk intramolecular (S1) disorder and interfacial intermolecular (CT) disorder by revisiting the spectral regions of interest for OSCs. Our findings are in agreement with the expected relationship of VOC with Urbach energy (EU), which suggests that the low EU is beneficial for reduced losses. However, unprecedentedly, we also identify a universal, almost linear relationship between the interfacial disorder (λ) and ΔVrad. We believe that these results can be exploited by the organic photovoltaic (OPV) community for the design of new molecules and a combination of donor-acceptors to further improve OSCs.
More details from the publisher
More details
More details
More details

Self‐Assembled Perovskite Nanoislands on CH3NH3PbI3 Cuboid Single Crystals by Energetic Surface Engineering

Advanced Functional Materials Wiley 31:50 (2021)

Authors:

Yurou Zhang, Dohyung Kim, Jung‐Ho Yun, Jongchul Lim, Min‐Cherl Jung, Xiaoming Wen, Jan Seidel, Eunyoung Choi, Mu Xiao, Tengfei Qiu, Miaoqiang Lyu, EQ Han, Mehri Ghasemi, Sean Lim, Henry J Snaith, Jae Sung Yun, Lianzhou Wang
More details from the publisher
More details

Self‐Assembled Perovskite Nanoislands on CH3NH3PbI3 Cuboid Single Crystals by Energetic Surface Engineering (Adv. Funct. Mater. 50/2021)

Advanced Functional Materials Wiley 31:50 (2021)

Authors:

Yurou Zhang, Dohyung Kim, Jung‐Ho Yun, Jongchul Lim, Min‐Cherl Jung, Xiaoming Wen, Jan Seidel, Eunyoung Choi, Mu Xiao, Tengfei Qiu, Miaoqiang Lyu, EQ Han, Mehri Ghasemi, Sean Lim, Henry J Snaith, Jae Sung Yun, Lianzhou Wang
More details from the publisher

Phase segregation in mixed-halide perovskites affects charge-carrier dynamics while preserving mobility

Nature Communications Springer Nature 12 (2021) 6955

Authors:

Silvia G Motti, Jay B Patel, Robert DJ Oliver, Henry J Snaith, Michael B Johnston, Laura M Herz

Abstract:

Mixed halide perovskites can provide optimal bandgaps for tandem solar cells which are key to improved cost-efficiencies, but can still suffer from detrimental illumination-induced phase segregation. Here we employ optical-pump terahertz-probe spectroscopy to investigate the impact of halide segregation on the charge-carrier dynamics and transport properties of mixed halide perovskite films. We reveal that, surprisingly, halide segregation results in negligible impact to the THz charge-carrier mobilities, and that charge carriers within the I-rich phase are not strongly localised. We further demonstrate enhanced lattice anharmonicity in the segregated I-rich domains, which is likely to support ionic migration. These phonon anharmonicity effects also serve as evidence of a remarkably fast, picosecond charge funnelling into the narrow-bandgap I-rich domains. Our analysis demonstrates how minimal structural transformations during phase segregation have a dramatic effect on the charge-carrier dynamics as a result of charge funnelling. We suggest that because such enhanced recombination is radiative, performance losses may be mitigated by deployment of careful light management strategies in solar cells.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • Current page 29
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet