Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Planar perovskite solar cells with long-term stability using ionic liquid additives

Nature Springer Nature 571:7764 (2019) 245-250

Authors:

S Bai, P Da, C Li, Z Wang, Y Zhongcheng, F Fan, K Maciej, L Xianjie, Nobuya Sakai, JT-W Wang, S Huetter, S Bucheler, M Fahlman, F Gao, Henry Snaith

Abstract:

Solar cells based on metal halide perovskites are one of the most promising photovoltaic technologies1,2,3,4. Over the past few years, the long-term operational stability of such devices has been greatly improved by tuning the composition of the perovskites5,6,7,8,9, optimizing the interfaces within the device structures10,11,12,13, and using new encapsulation techniques14,15. However, further improvements are required in order to deliver a longer-lasting technology. Ion migration in the perovskite active layer—especially under illumination and heat—is arguably the most difficult aspect to mitigate16,17,18. Here we incorporate ionic liquids into the perovskite film and thence into positive–intrinsic–negative photovoltaic devices, increasing the device efficiency and markedly improving the long-term device stability. Specifically, we observe a degradation in performance of only around five per cent for the most stable encapsulated device under continuous simulated full-spectrum sunlight for more than 1,800 hours at 70 to 75 degrees Celsius, and estimate that the time required for the device to drop to eighty per cent of its peak performance is about 5,200 hours. Our demonstration of long-term operational, stable solar cells under intense conditions is a key step towards a reliable perovskite photovoltaic technology.
More details from the publisher
Details from ORA
More details
More details

High Responsivity and Response Speed Single‐Layer Mixed‐Cation Lead Mixed‐Halide Perovskite Photodetectors Based on Nanogap Electrodes Manufactured on Large‐Area Rigid and Flexible Substrates

Advanced Functional Materials Wiley 29:28 (2019)

Authors:

Dimitra G Georgiadou, Yen‐Hung Lin, Jongchul Lim, Sinclair Ratnasingham, Martyn A McLachlan, Henry J Snaith, Thomas D Anthopoulos
More details from the publisher
More details

Inverted perovskite solar cells with air stable diketopyrrolopyrrole-based electron transport layer

Solar Energy Elsevier 186 (2019) 9-16

Authors:

Shikha Sharma, Nobuya Sakai, Suman Ray, Satyaprasad P Senanayak, Henning Sirringhaus, Henry J Snaith, Satish Patil
More details from the publisher

Overcoming zinc oxide interface instability with a methylammonium-free perovskite for high performance solar cells

Advanced Functional Materials Wiley 29:47 (2019) 1900466

Authors:

Kelly Schutt, P Nayak, A Ramadan, B Wenger, Y-H Lin, H Snaith

Abstract:

Perovskite solar cells have achieved the highest power conversion efficiencies on metal oxide n‐type layers, including SnO2 and TiO2. Despite ZnO having superior optoelectronic properties to these metal oxides, such as improved transmittance, higher conductivity, and closer conduction band alignment to methylammonium (MA)PbI3, ZnO is largely overlooked due to a chemical instability when in contact with metal halide perovskites, which leads to rapid decomposition of the perovskite. While surface passivation techniques have somewhat mitigated this instability, investigations as to whether all metal halide perovskites exhibit this instability with ZnO are yet to be undertaken. Experimental methods to elucidate the degradation mechanisms at ZnO–MAPbI3 interfaces are developed. By substituting MA with formamidinium (FA) and cesium (Cs), the stability of the perovskite–ZnO interface is greatly enhanced and it is found that stability compares favorably with SnO2‐based devices after high‐intensity UV irradiation and 85 °C thermal stressing. For devices comprising FA‐ and Cs‐based metal halide perovskite absorber layers on ZnO, a 21.1% scanned power conversion efficiency and 18% steady‐state power output are achieved. This work demonstrates that ZnO appears to be as feasible an n‐type charge extraction layer as SnO2, with many foreseeable advantages, provided that MA cations are avoided.
More details from the publisher
Details from ORA
More details

Charge-carrier dynamics, mobilities and diffusion lengths of 2D-3D hybrid butylammonium-caesium-formamidinium lead halide perovskites

Advanced Functional Materials Wiley (2019)

Authors:

Leonardo Buizza, Timothy Crothers, Zhiping Wang, Patel Jay, R Milot, Henry Snaith, Michael Johnston, Laura Herz

Abstract:

Perovskite solar cells (PSCs) have improved dramatically over the past decade, increasing in efficiency and gradually overcoming hurdles of temperature‐ and humidity‐induced instability. Materials that combine high charge‐carrier lifetimes and mobilities, strong absorption, and good crystallinity of 3D perovskites with the hydrophobic properties of 2D perovskites have become particularly promising candidates for use in solar cells. In order to fully understand the optoelectronic properties of these 2D–3D hybrid systems, the hybrid perovskite BAx(FA0.83Cs0.17)1‐xPb(I0.6Br0.4)3 is investigated across the composition range 0 ≤ x ≤ 0.8. Small amounts of butylammonium (BA) are found that help to improve crystallinity and appear to passivate grain boundaries, thus reducing trap‐mediated charge‐carrier recombination and enhancing charge‐carrier mobilities. Excessive amounts of BA lead to poor crystallinity and inhomogeneous film formation, greatly reducing effective charge‐carrier mobility. For low amounts of BA, the benevolent effects of reduced recombination and enhanced mobilities lead to charge‐carrier diffusion lengths up to 7.7 µm for x = 0.167. These measurements pave the way for highly efficient, highly stable PSCs and other optoelectronic devices based on 2D–3D hybrid materials.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 48
  • Page 49
  • Page 50
  • Page 51
  • Current page 52
  • Page 53
  • Page 54
  • Page 55
  • Page 56
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet