Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes

(2018)

Authors:

Baodan Zhao, Sai Bai, Vincent Kim, Robin Lamboll, Ravichandran Shivanna, Florian Auras, Johannes M Richter, Le Yang, Linjie Dai, Mejd Alsari, Xiao-Jian She, Lusheng Liang, Jiangbin Zhang, Samuele Lilliu, Peng Gao, Henry J Snaith, Jianpu Wang, Neil C Greenham, Richard H Friend, Dawei Di
More details from the publisher

Carbon Nanotubes - the p-Type Contact of the Future for Perovskite Solar Cells?

ECS Meeting Abstracts The Electrochemical Society MA2018-01:5 (2018) 643-643

Authors:

Severin N Habisreutinger, Nakita K Noel, Henry J Snaith, Robin J Nicholas
More details from the publisher

Degradation Kinetics of Inverted Perovskite Solar Cells

Scientific Reports Springer Nature 8:1 (2018) 5977

Authors:

Mejd Alsari, Andrew J Pearson, Jacob Tse-Wei Wang, Zhiping Wang, Augusto Montisci, Neil C Greenham, Henry J Snaith, Samuele Lilliu, Richard H Friend
More details from the publisher
More details
More details

Perovskite/Colloidal Quantum Dot Tandem Solar Cells: Theoretical Modeling and Monolithic Structure

ACS Energy Letters American Chemical Society (ACS) 3:4 (2018) 869-874

Authors:

Arfa Karani, Le Yang, Sai Bai, Moritz H Futscher, Henry J Snaith, Bruno Ehrler, Neil C Greenham, Dawei Di
More details from the publisher

Balancing charge carrier transport in a quantum dot P–N Junction toward hysteresis-free high-performance solar cells

ACS Energy Letters American Chemical Society 3 (2018) 1036-1043

Authors:

Yuljae Cho, Bo Hou, Jongchul Lim, Sanghyo Lee, Sangyeon Pak, John Hong, Paul Giraud, A-R Jang, Y-W Lee, Juwon Lee, JE Jang, Henry J Snaith, Stephen Morris, Junginn Sohn, SeungNam Cha, Jong Min Kim

Abstract:

In a quantum dot solar cell (QDSC) that has an inverted structure, the QD layers form two different junctions between the electron transport layer (ETL) and the other semiconducting QD layer. Recent work on an inverted-structure QDSC has revealed that the junction between the QD layers is the dominant junction, rather than the junction between the ETL and the QD layers, which is in contrast to the conventional wisdom. However, to date, there have been a lack of systematic studies on the role and importance of the QD heterojunction structure on the behavior of the solar cell and the resulting device performance. In this study, we have systematically controlled the structure of the QD junction to balance charge transport, which demonstrates that the position of the junction has a significant effect on the hysteresis effect, fill factor, and solar cell performance and is attributed to balanced charge transport.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 60
  • Page 61
  • Page 62
  • Page 63
  • Current page 64
  • Page 65
  • Page 66
  • Page 67
  • Page 68
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet