Research update: Strategies for improving the stability of perovskite solar cells
APL Materials AIP Publishing 4:9 (2016) 091503
Abstract:
The power-conversion efficiency of perovskite solar cells has soared up to 22.1% earlier this year. Within merely five years, the perovskite solar cell can now compete on efficiency with inorganic thin-film technologies, making it the most promising of the new, emerging photovoltaic solar cell technologies. The next grand challenge is now the aspect of stability. The hydrophilicity and volatility of the organic methylammonium makes the work-horse material methylammonium lead iodide vulnerable to degradation through humidity and heat. Additionally, ultraviolet radiation and oxygen constitute stressors which can deteriorate the device performance. There are two fundamental strategies to increasing the device stability: developing protective layers around the vulnerable perovskite absorber and developing a more resilient perovskite absorber. The most important reports in literature are summarized and analyzed here, letting us conclude that any long-term stability, on par with that of inorganic thin-film technologies, is only possible with a more resilient perovskite incorporated in a highly protective device design.Cross-linkable Fullerene Derivatives for Solution-processed n–i-p Perovskite Solar Cells
ACS Energy Letters American Chemical Society 1:4 (2016) 648-653
Abstract:
Hybrid perovskites form an extremely attractive class of materials for large scale, low-cost photovoltaic applications. Fullerene-based charge extraction layers have emerged as a viable n-type charge collection layer, and in “inverted” p–i–n device architectures the solar cells are approaching efficiencies of 20%. However, the regular n–i–p devices employing fullerenes still lag behind in performance. Here, we show that partial solubility of fullerene derivatives in the aprotic solvents used for the perovskites makes it challenging to retain integral films in multilayer solution processing. To overcome this issue we introduce cross-linkable fullerene derivatives as charge collection layers in n–i–p planar junction perovskite solar cells. The cross-linked fullerene layers are insolubilized and deliver improved performance in solar cells enabled by a controllable film thickness.Perovskite-perovskite tandem photovoltaics with optimized bandgaps
(2016)
Identification and mitigation of a critical interfacial instability in perovskite solar cells employing copper thiocyanate hole-transporter
Advanced Materials Interfaces Wiley 3:22 (2016) 1600571
Abstract:
Metal halide perovskites have emerged as one of the most promising materials for photovoltaics (PVs), with power conversion efficiency of over 22% already demonstrated. In order to compete with traditional crystalline silicon PV, cost and stability are equally important issues that need to be considered besides efficiency. Copper thiocyanate (CuSCN) is an interesting candidate to be used as an inexpensive, thermally stable p-type charge conducting material in perovskite solar cells. Here, we report 13% efficient perovskite solar cells employing CuSCN as the hole-transport material. We compare the stability of cells employing CuSCN with those employing the archetypical organic hole-transporter 2,2′,7,7′-Tetrakis (N,N-di-p-methoxyphenyl-amine) 9,9′-Spirobifluorene (Spiro-OMeTAD), under elevated temperature in ambient atmosphere. Surprisingly, we find that the devices employing CuSCN degrade faster under elevated temperatures than the devices employing Spiro-OMeTAD. We discover that an interfacial degradation mechanism occurs at the heterojunction between the perovskite absorber and the CuSCN, even in a dry nitrogen atmosphere, identifying the presence of a critical instability. Interestingly, with the additional coating of the completed cells with a thin film of insulating poly(methyl methacrylate) (PMMA), functioning as a rudimentary “on-cell” encapsulation, we significantly alleviate this issue and deliver efficient perovskite solar cells which survive for more than 1000 hours at 85 °C in air with only 25% degradation in performance. Beyond identifying a critical area to address in order to enable CuSCN to be useful for long term operation in perovskite solar cells, our findings indicate that the role of the “encapsulant” is to both keep the environment out, and keep degradation products within the cell.Optical Phonons in Methylammonium Lead Halide Perovskites and Implications for Charge Transport
(2016)