Vacancy-Ordered Double Perovskite Cs2TeI6 Thin Films for Optoelectronics
Chemistry of Materials American Chemical Society (ACS) 32:15 (2020) 6676-6684
A phosphine oxide route to formamidinium lead tribromide nanoparticles
Chemistry of Materials American Chemical Society 32:17 (2020) 7172-7180
Abstract:
We present the synthesis of formamidinium lead tribromide (FAPbBr3) perovskite nanocrystals through a phosphine oxide route, where in comparison to more traditional syntheses oleylamine is replaced with trioctylphosphine oxide (TOPO). This route has previously been shown to be successful for the inorganic cesium lead tribromide perovskite nanocrystals. We examine the interactions between the precursors via nuclear magnetic resonance spectroscopy (NMR). We confirm the existence of an interaction between FA-oleate and TOPO and use this to guide the optimization of our synthesis. When the reaction is conducted at room temperature, we observe the formation of nanoparticles with high photoluminescence quantum yield (PLQY, ∼70%) at 2.39 eV (518 nm) with little ripening or size defocusing over time. Although we obtain narrow emission peaks, the crystals are irregular in shape—a testament to the impact of the FA-oleate:TOPO interaction. Despite a drop in PLQY in the washed solutions, films made maintain a high PLQY of ∼50% at 2.33 eV (532 nm), which is fortuitously the ideal wavelength for the green emission channel in displays, and we demonstrate 532 nm electroluminescence in light-emitting diodes with an EQE of 3.7%.Competitive nucleation mechanism for CsPbBr₃ perovskite nanoplatelets growth
Journal of Physical Chemistry Letters American Chemical Society 11:16 (2020) 6535-6543
Abstract:
We analyze nucleation-controlled nanocrystal growth in a solution containing surface-binding molecular ligands, which can also nucleate compact layers on the crystal surfaces. We show that, if the critical nucleus size for ligands is larger and the nucleation barrier is lower than those for crystal atoms, the ligands nucleate faster than the atoms on relatively wide crystal facets but much slower, if at all, on narrow facets. Such competitive nucleation of ligands and atoms results in ligands covering predominantly wider facets, thus excluding them from the growth process, and acts as a selection mechanism for the growth of crystals with narrower facets, the so-called nanoplatelets. The theory is confirmed by Monte Carlo simulations and validated experimentally for CsPbBr3 nanoplatelets grown from solution. We find that the anisotropic crystal growth is controlled by the growth temperature and the strength of surface bonding for the passivating molecular ligands.Understanding the Performance-Limiting Factors of Cs2AgBiBr6 Double-Perovskite Solar Cells
ACS Energy Letters American Chemical Society (ACS) 5:7 (2020) 2200-2207
A piperidinium salt stabilizes efficient metal-halide perovskite solar cells
Science American Association for the Advancement of Science 369:6499 (2020) 96-102