Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Evidence of Nitrogen Contribution to the Electronic Structure of the CH3 NH3 PbI3 Perovskite.

Chemistry (Weinheim an der Bergstrasse, Germany) 24:14 (2018) 3539-3544

Authors:

Małgorzata Kot, Konrad Wojciechowski, Henry Snaith, Dieter Schmeißer

Abstract:

Despite fast development of hybrid perovskite solar cells, there are many fundamental questions related to the perovskite film which remain open. For example, there are contradicting theoretical reports on the role of the organic methylammonium cation (CH3 NH3+ ) in the methylammonium lead triiodide (CH3 NH3 PbI3 ) perovskite film. From one side it is reported that the organic cation does not contribute to electronic structure of the CH3 NH3 PbI3 film. From the other side, valence band maximum fluctuations, dependent on the CH3 NH3+ rotation, have been theoretically predicted. The resonant X-ray photoelectron spectroscopy results reported here show experimental evidence of nitrogen contribution to the CH3 NH3 PbI3 electronic structure. Moreover, the observed strong resonances of nitrogen with the I 5s and the Pb 5d-6s levels indicate that the CH3 NH3 PbI3 valence band is extended up to ≈18 eV below the Fermi energy, and therefore one should also consider these shallow core levels while modeling its electronic structure.
More details from the publisher
More details
More details

Spatially Resolved Insight into the Chemical and Electronic Structure of Solution‐Processed Perovskites—Why to (Not) Worry about Pinholes

Advanced Materials Interfaces Wiley 5:5 (2018)

Authors:

Claudia Hartmann, Golnaz Sadoughi, Roberto Félix, Evelyn Handick, Hagen W Klemm, Gina Peschel, Ewa Madej, Alexander B Fuhrich, Xiaxia Liao, Simone Raoux, Daniel Abou‐Ras, Dan Wargulski, Thomas Schmidt, Regan G Wilks, Henry Snaith, Marcus Bär
More details from the publisher
More details

Hybrid perovskites: prospects for concentrator solar cells

Advanced Science Wiley 5:4 (2018) 1700792

Authors:

Qianqian Lin, Zhiping Wang, Henry J Snaith, Michael Johnston, Laura Herz

Abstract:

Perovskite solar cells have shown a meteoric rise of power conversion efficiency and a steady pace of improvements in their stability of operation. Such rapid progress has triggered research into approaches that can boost efficiencies beyond the Shockley-Queisser limit stipulated for a single-junction cell under normal solar illumination conditions. The tandem solar cell architecture is one concept here that has recently been successfully implemented. However, the approach of solar concentration has not been sufficiently explored so far for perovskite photovoltaics, despite its frequent use in the area of inorganic semiconductor solar cells. Here, the prospects of hybrid perovskites are assessed for use in concentrator solar cells. Solar cell performance parameters are theoretically predicted as a function of solar concentration levels, based on representative assumptions of charge-carrier recombination and extraction rates in the device. It is demonstrated that perovskite solar cells can fundamentally exhibit appreciably higher energy-conversion efficiencies under solar concentration, where they are able to exceed the Shockley-Queisser limit and exhibit strongly elevated open-circuit voltages. It is therefore concluded that sufficient material and device stability under increased illumination levels will be the only significant challenge to perovskite concentrator solar cell applications.
More details from the publisher
Details from ORA
More details
More details

Degradation Kinetics of Inverted Perovskite Solar Cells

(2018)

Authors:

Mejd Alsari, Andrew J Pearson, Jacob Tse-Wei Wang, Zhiping Wang, Augusto Montisci, Neil C Greenham, Henry J Snaith, Samuele Lilliu, Richard H Friend
More details from the publisher

The Effect of Ionic Composition on Acoustic Phonon Speeds in Hybrid Perovskites from Brillouin Spectroscopy and Density Functional Theory

(2018)

Authors:

Irina V Kabakova, Ido Azuri, Zhuoying Chen, Pabitra K Nayak, Henry J Snaith, Leeor Kronik, Carl Paterson, Artem A Bakulin, David A Egger
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 56
  • Page 57
  • Page 58
  • Page 59
  • Current page 60
  • Page 61
  • Page 62
  • Page 63
  • Page 64
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet