Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Dopant-free planar n-i-p perovskite solar cells with steady-state efficiencies exceeding 18%

ACS Energy Letters American Chemical Society 2:3 (2017) 622-628

Authors:

Severin Habisreutinger, Bernard Wenger, Henry J Snaith, Robin J Nicholas

Abstract:

In this Letter, we demonstrate a planar n–i–p perovskite solar cell design with a steady-state efficiency of up to 18.8% in the absence of any electronic dopants. In the device stack, solution-processed SnO2 is used as an electron-accepting n-type layer. The absorber layer is a perovskite with both mixed organic A-site cations and mixed halides (FA0.83MA0.17Pb(I0.83Br0.17)3). The hole-transporting p-type layer is a double-layer structure of polymer-wrapped single-walled carbon nanotubes and undoped spiro-OMeTAD. We show that this approach can deliver steady-state efficiencies as high as and even higher than those of traditionally doped spiro-OMeTAD, providing a pathway for dopant-free perovskite solar cells crucial for long-term stability.
More details from the publisher
Details from ORA
More details

Controlling nucleation and growth of metal halide perovskite thin films for high-Efficiency perovskite solar cells

Small Wiley 13:14 (2017) 1-8

Authors:

Nobuya Sakai, Zhiping Wang, Victor Burlakov, Jongchul Lim, David McMeekin, S Pathak, Henry Snaith

Abstract:

Metal halide perovskite thin films can be crystallized via a broad range of solution-based routes. However, the quality of the final films is strongly dependent upon small changes in solution composition and processing parameters. Here, this study demonstrates that a fractional substitution of PbCl2 with PbI2 in the 3CH3 NH3 I:PbCl2 mixed-halide starting solution has a profound influence upon the ensuing thin-film crystallization. The presence of PbI2 in the precursor induces a uniform distribution of regular quadrilateral-shaped CH3 NH3 PbI3 perovskite crystals in as-cast films, which subsequently grow to form pinhole-free perovskite films with highly crystalline domains. With this new formulation of 3CH3 NH3 I:0.98PbCl2 :0.02PbI2 , this study achieves a 19.1% current-voltage measured power conversion efficiency and a 17.2% stabilized power output in regular planar heterojunction solar cells.
More details from the publisher
Details from ORA
More details
More details

Near-neutral-colored semitransparent perovskite films using a combination of colloidal self-assembly and plasma etching

Solar Energy Materials and Solar Cells Elsevier 160 (2017) 193-202

Authors:

Lijing Zhang, Maximilian T Hörantner, Wei Zhang, Qingfeng Yan, Henry J Snaith
More details from the publisher

ZrO2/TiO2 Electron Collection Layer for Efficient Meso-Superstructured Hybrid Perovskite Solar Cells

ACS Applied Materials & Interfaces American Chemical Society (ACS) 9:3 (2017) 2342-2349

Authors:

Mario Alejandro Mejía Escobar, Sandeep Pathak, Jiewei Liu, Henry J Snaith, Franklin Jaramillo
More details from the publisher
More details
More details

Electron injection and scaffold effects in perovskite solar cells

Journal of Materials Chemistry C Royal Society of Chemistry (RSC) 5:3 (2017) 634-644

Authors:

Miguel Anaya, Wei Zhang, Bruno Clasen Hames, Yuelong Li, Francisco Fabregat-Santiago, Mauricio E Calvo, Henry J Snaith, Hernán Míguez, Iván Mora-Seró
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 68
  • Page 69
  • Page 70
  • Page 71
  • Current page 72
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet