Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Electron–phonon coupling in hybrid lead halide perovskites

Nature Communications Nature Publishing Group: Nature Communications 7 (2016)

Authors:

Adam DM Wright, Laura M Herz, Rebecca L Milot, Carla Verdi, Michael B Johnston, Giles E Eperon, Henry J Snaith, Feliciano Giustino, Miguel A Perez-Osorio

Abstract:

Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3,CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron–phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fro¨hlich coupling constants ofB40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites.
More details from the publisher
Details from ORA
More details
More details

High‐Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18%

Advanced Functional Materials Wiley 26:20 (2016) 3508-3514

Authors:

Lichen Zhao, Deying Luo, Jiang Wu, Qin Hu, Wei Zhang, Ke Chen, Tanghao Liu, Yi Liu, Yifei Zhang, Feng Liu, Thomas P Russell, Henry J Snaith, Rui Zhu, Qihuang Gong
More details from the publisher
More details

Perovskite Solar Cells: High‐Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18% (Adv. Funct. Mater. 20/2016)

Advanced Functional Materials Wiley 26:20 (2016) 3551-3551

Authors:

Lichen Zhao, Deying Luo, Jiang Wu, Qin Hu, Wei Zhang, Ke Chen, Tanghao Liu, Yi Liu, Yifei Zhang, Feng Liu, Thomas P Russell, Henry J Snaith, Rui Zhu, Qihuang Gong
More details from the publisher

Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3-xClx perovskite solar cells: kinetics and mechanisms

Advanced Energy Materials Wiley 6:13 (2016) 1600014

Authors:

Andrew J Pearson, Giles E Eperon, Paul E Hopkinson, Severin Habisreutinger, Jacob Tse-Wei Wang, Henry J Snaith, Neil C Greenham

Abstract:

The rapid pace of development for hybrid perovskite photovoltaics has recently resulted in promising figures of merit being obtained with regard to device stability. Rather than relying upon expensive barrier materials, realizing market‐competitive lifetimes is likely to require the development of intrinsically stable devices, and to this end accelerated aging tests can help identify degradation mechanisms that arise over the long term. Here, oxygen‐induced degradation of archetypal perovskite solar cells under operation is observed, even in dry conditions. With prolonged aging, this process ultimately drives decomposition of the perovskite. It is deduced that this is related to charge build‐up in the perovskite layer, and it is shown that by efficiently extracting charge this degradation can be mitigated. The results confirm the importance of high charge‐extraction efficiency in maximizing the tolerance of perovskite solar cells to oxygen.
More details from the publisher
Details from ORA
More details

Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells

Advanced Energy Materials 6:8 (2016) 1502458

Authors:

Rebecca Sutton, GE Eperon, L Miranda, ES Parrott, BA Kamino, JB Patel, MT Hörantner, MB Johnston, Amir Abbas Haghighirad, DT Moore, HJ Snaith

Abstract:

Highest reported efficiency cesium lead halide perovskite solar cells are realized by tuning the bandgap and stabilizing the black perovskite phase at lower temperatures. CsPbI2Br is employed in a planar architecture device resulting in 9.8% power conversion efficiency and over 5% stabilized power output. Offering substantially enhanced thermal stability over their organic based counterparts, these results show that all-inorganic perovskites can represent a promising next step for photovoltaic materials.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 77
  • Page 78
  • Page 79
  • Page 80
  • Current page 81
  • Page 82
  • Page 83
  • Page 84
  • Page 85
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet