Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells

Science American Association for the Advancement of Science 351:6269 (2015) 151-155

Authors:

Amir A Haghighirad, David P McMeekin, Golnaz Sadoughi, Waqaas Rehman, Giles E Eperon, Michael Saliba, Maximilian T Horanter, Nobuya Sakai, Lars Korte, Bernd Rech, Michael B Johnston, Laura M Herz, Henry J Snaith

Abstract:

Metal halide perovskite photovoltaic cells could potentially boost the efficiency of commercial silicon photovoltaic modules from ∼20 toward 30% when used in tandem architectures. An optimum perovskite cell optical band gap of ~1.75 electron volts (eV) can be achieved by varying halide composition, but to date, such materials have had poor photostability and thermal stability. Here we present a highly crystalline and compositionally photostable material, [HC(NH2)2](0.83)Cs(0.17)Pb(I(0.6)Br(0.4))3, with an optical band gap of ~1.74 eV, and we fabricated perovskite cells that reached open-circuit voltages of 1.2 volts and power conversion efficiency of over 17% on small areas and 14.7% on 0.715 cm(2) cells. By combining these perovskite cells with a 19%-efficient silicon cell, we demonstrated the feasibility of achieving >25%-efficient four-terminal tandem cells.
More details from the publisher
Details from ORA
More details
More details

Structured organic–inorganic perovskite toward a distributed feedback laser

Advanced Materials Wiley 28:5 (2015) 923-929

Authors:

Michael Saliba, Simon Wood, Jay Patel, Pabitra Nayak, Jian Huang, Jack Alexander-Webber, Bernard Wenger, Samuel Stranks, Maximilian Hörantner, Jacob Wang, Robin Nicholas, Laura Herz, Michael Johnston, Stephen Morris, Henry Snaith, Moritz Riede

Abstract:

A general strategy for the in-plane structuring of organic-inorganic perovskite films is presented. The method is used to fabricate an industrially relevant distributed feedback (DFB) cavity, which is a critical step towards all-electrially pumped injection laser diodes. This approach opens the prospects of perovskite materials for much improved optical control in LEDs, solar cells and also toward applications as optical devices.
More details from the publisher
Details from ORA
More details
More details

Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells

(2015)

Authors:

W Zhang, S Pathak, N Sakai, T Stergiopoulos, PK Nayak, NK Noel, AA Haghighirad, VM Burlakov, DW deQuilettes, A Sadhanala, W Li, L Wang, DS Ginger, RH Friend, Henry Snaith

Abstract:

Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 back into I(-), and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead.
Details from ORA
More details from the publisher
More details
More details

Determination of the exciton binding energy and effective masses for the methylammonium and formamidinium lead tri-halide perovskite family

(2015)

Authors:

Krzysztof Galkowski, Anatolie Mitioglu, Atsuhiko Miyata, Paulina Plochocka, Oliver Portugall, Giles E Eperon, Jacob Tse-Wei Wang, Thomas Stergiopoulos, Samuel D Stranks, Henry J Snaith, Robin J Nicholas
More details from the publisher

Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 Perovskite thin films

Advanced Functional Materials Wiley 25:39 (2015) 6218-6227

Authors:

Rebecca L Milot, Giles E Eperon, Henry J Snaith, Michael Johnston, Laura Herz

Abstract:

The photoluminescence, transmittance, charge-carrier recombination dynamics, mobility, and diffusion length of CH3NH3PbI3 are investigated in the temperature range from 8 to 370 K. Profound changes in the optoelectronic properties of this prototypical photovoltaic material are observed across the two structural phase transitions occurring at 160 and 310 K. Drude-like terahertz photoconductivity spectra at all temperatures above 80 K suggest that charge localization effects are absent in this range. The monomolecular charge-carrier recombination rate generally increases with rising temperature, indicating a mechanism dominated by ionized impurity mediated recombination. Deduced activation energies Ea associated with ionization are found to increase markedly from the room-temperature tetragonal (Ea ≈ 20 meV) to the higher-temperature cubic (Ea ≈ 200 meV) phase adopted above 310 K. Conversely, the bimolecular rate constant decreases with rising temperature as charge-carrier mobility declines, while the Auger rate constant is highly phase specific, suggesting a strong dependence on electronic band structure. The charge-carrier diffusion length gradually decreases with rising temperature from about 3 μm at -93 °C to 1.2 μm at 67 °C but remains well above the optical absorption depth in the visible spectrum. These results demonstrate that there are no fundamental obstacles to the operation of cells based on CH3NH3PbI3 under typical field conditions. The photoconductivity in CH3NH3PbI3 thin films is investigated from 8 to 370 K across three structural phases. Analysis of the charge-carrier recombination dynamics reveals a variety of starkly differing recombination mechanisms. Evidence of charge-carrier localization is observed only at low temperature. High charge mobility and diffusion length are maintained at high temperature beyond the tetragonal-to-cubic phase transition at ≈310 K.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 85
  • Page 86
  • Page 87
  • Page 88
  • Current page 89
  • Page 90
  • Page 91
  • Page 92
  • Page 93
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet