Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells.

The journal of physical chemistry letters 6:12 (2015) 2399-2405

Authors:

Konrad Wojciechowski, Tomas Leijtens, Svetlana Siprova, Christoph Schlueter, Maximilian T Hörantner, Jacob Tse-Wei Wang, Chang-Zhi Li, Alex K-Y Jen, Tien-Lin Lee, Henry J Snaith

Abstract:

Organic-inorganic halide perovskite solar cells have rapidly evolved over the last 3 years. There are still a number of issues and open questions related to the perovskite material, such as the phenomenon of anomalous hysteresis in current-voltage characteristics and long-term stability of the devices. In this work, we focus on the electron selective contact in the perovskite solar cells and physical processes occurring at that heterojunction. We developed efficient devices by replacing the commonly employed TiO2 compact layer with fullerene C60 in a regular n-i-p architecture. Detailed spectroscopic characterization allows us to present further insight into the nature of photocurrent hysteresis and charge extraction limitations arising at the n-type contact in a standard device. Furthermore, we show preliminary stability data of perovskite solar cells under working conditions, suggesting that an n-type organic charge collection layer can increase the long-term performance.
More details from the publisher
More details
More details

Observation and Mediation of the Presence of Metallic Lead in Organic-Inorganic Perovskite Films.

ACS applied materials & interfaces 7:24 (2015) 13440-13444

Authors:

Golnaz Sadoughi, David E Starr, Evelyn Handick, Samuel D Stranks, Mihaela Gorgoi, Regan G Wilks, Marcus Bär, Henry J Snaith

Abstract:

We have employed soft and hard X-ray photoelectron spectroscopies to study the depth-dependent chemical composition of mixed-halide perovskite thin films used in high-performance solar cells. We detect substantial amounts of metallic lead in the perovskite films, which correlate with significant density of states above the valence band maximum. The metallic lead content is higher in the bulk of the perovskite films than at the surface. Using an optimized postanneal process in air, we can reduce the metallic lead content in the perovskite film. This process reduces the amount of metallic lead and a corresponding increase in the photoluminescence quantum efficiency of the perovskite films can be observed. This correlation indicates that metallic lead impurities are likely a key defect whose concentration can be controlled by simple annealing procedures in order to increase the performance for perovskite solar cells.
More details from the publisher
More details
More details

Enhanced Amplified Spontaneous Emission in Perovskites using a Flexible Cholesteric Liquid Crystal Reflector

Nano letters American Chemical Society 15:8 (2015) 4935-4941

Authors:

Samuel D Stranks, Simon M Wood, Konrad Wojciechowski, Felix Deschler, Michael Saliba, Hitesh Khandelwal, Jay B Patel, Steve J Elston, Laura Herz, Michael Johnston, Albertus PHJ Schenning, Michael G Debije, Moritz Riede, Stephen M Morris, Henry J Snaith

Abstract:

Organic-inorganic perovskites are highly promising solar cell materials with laboratory-based power conversion efficiencies already matching those of established thin film technologies. Their exceptional photovoltaic performance is in part attributed to the presence of efficient radiative recombination pathways, thereby opening up the possibility of efficient light-emitting devices. Here, we demonstrate optically pumped amplified spontaneous emission (ASE) at 780 nm from a 50 nm-thick film of CH3NH3PbI3 perovskite that is sandwiched within a cavity composed of a thin-film (∼7 μm) cholesteric liquid crystal (CLC) reflector and a metal back-reflector. The threshold fluence for ASE in the perovskite film is reduced by at least two orders of magnitude in the presence of the CLC reflector, which results in a factor of two reduction in threshold fluence compared to previous reports. We consider this to be due to improved coupling of the oblique and out-of-plane modes that are reflected into the bulk in addition to any contributions from cavity modes. Furthermore, we also demonstrate enhanced ASE on flexible reflectors and discuss how improvements in the quality factor and reflectivity of the CLC layers could lead to single-mode lasing using CLC reflectors. Our work opens up the possibility of fabricating widely wavelength-tunable "mirror-less" single-mode lasers on flexible substrates, which could find use in applications such as flexible displays and friend or foe identification.
More details from the publisher
Details from ORA
More details
More details

ChemInform Abstract: Formation of Thin Films of Organi—Inorganic Perovskites for High‐Efficiency Solar Cells

ChemInform Wiley 46:21 (2015) no-no

Authors:

Samuel D Stranks, Pabitra K Nayak, Wei Zhang, Thomas Stergiopoulos, Henry J Snaith
More details from the publisher

Efficient room temperature aqueous Sb2S3 synthesis for inorganic-organic sensitized solar cells with 5.1% efficiencies.

Chemical communications (Cambridge, England) 51:41 (2015) 8640-8643

Authors:

Karl C Gödel, Yong Chan Choi, Bart Roose, Aditya Sadhanala, Henry J Snaith, Sang Il Seok, Ullrich Steiner, Sandeep K Pathak

Abstract:

Sb2S3 sensitized solar cells are a promising alternative to devices employing organic dyes. The manufacture of Sb2S3 absorber layers is however slow and cumbersome. Here, we report the modified aqueous chemical bath synthesis of Sb2S3 absorber layers for sensitized solar cells. Our method is based on the hydrolysis of SbCl3 to complex antimony ions decelerating the reaction at ambient conditions, in contrast to the usual low temperature deposition protocol. This simplified deposition route allows the manufacture of sensitized mesoporous-TiO2 solar cells with power conversion efficiencies up to η = 5.1%. Photothermal deflection spectroscopy shows that the sub-bandgap trap-state density is lower in Sb2S3 films deposited with this method, compared to standard deposition protocols.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 89
  • Page 90
  • Page 91
  • Page 92
  • Current page 93
  • Page 94
  • Page 95
  • Page 96
  • Page 97
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet