Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Crystallization Kinetics of Organic–Inorganic Trihalide Perovskites and the Role of the Lead Anion in Crystal Growth

Journal of the American Chemical Society American Chemical Society (ACS) 137:6 (2015) 2350-2358

Authors:

David T Moore, Hiroaki Sai, Kwan W Tan, Detlef-M Smilgies, Wei Zhang, Henry J Snaith, Ulrich Wiesner, Lara A Estroff
More details from the publisher
More details
More details

Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer

The Journal of Physical Chemistry Letters American Chemical Society (ACS) 6:3 (2015) 432-437

Authors:

Simone Guarnera, Antonio Abate, Wei Zhang, Jamie M Foster, Giles Richardson, Annamaria Petrozza, Henry J Snaith
More details from the publisher
More details
More details

Highly efficient perovskite solar cells with tunable structural color

Nano Letters American Chemical Society 15:3 (2015) 1698-1702

Authors:

W Zhang, M Anaya, G Lozano, ME Calvo, Michael Johnston, H Míguez, Henry Snaith

Abstract:

The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources.
More details from the publisher
Details from ORA
More details
More details

Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells.

Nature communications (2015)

Authors:

W Zhang, M Saliba, DT Moore, SK Pathak, MT Hörantner, T Stergiopoulos, SD Stranks, Giles Eperon, JA Alexander-Webber, A Abate, A Sadhanala, S Yao, Y Chen, RH Friend, LA Estroff, U Wiesner, Henry Snaith

Abstract:

To date, there have been a plethora of reports on different means to fabricate organic-inorganic metal halide perovskite thin films; however, the inorganic starting materials have been limited to halide-based anions. Here we study the role of the anions in the perovskite solution and their influence upon perovskite crystal growth, film formation and device performance. We find that by using a non-halide lead source (lead acetate) instead of lead chloride or iodide, the perovskite crystal growth is much faster, which allows us to obtain ultrasmooth and almost pinhole-free perovskite films by a simple one-step solution coating with only a few minutes annealing. This synthesis leads to improved device performance in planar heterojunction architectures and answers a critical question as to the role of the anion and excess organic component during crystallization. Our work paves the way to tune the crystal growth kinetics by simple chemistry.
More details from the publisher
Details from ORA
More details
More details

Hole-transport materials with greatly-differing redox potentials give efficient TiO2-[CH3NH3][PbX3] perovskite solar cells

Physical Chemistry Chemical Physics 17:4 (2015) 2335-2338

Authors:

A Abate, M Planells, DJ Hollman, V Barthi, S Chand, HJ Snaith, N Robertson

Abstract:

Two diacetylide-triphenylamine hole-transport materials (HTM) with varying redox potential have been applied in planar junction TiO2-[CH3NH3]PbI3-xClx solar cells leading to high power-conversion efficiencies up to 8.8%. More positive oxidation potential of the HTM gives higher VOC and lower JSC illustrating the role of matching energy levels, however both HTMs gave efficient cells despite a difference of 0.44 V in their redox potentials. This journal is
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 94
  • Page 95
  • Page 96
  • Page 97
  • Current page 98
  • Page 99
  • Page 100
  • Page 101
  • Page 102
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet