Exposing binding-favourable facets of perovskites for tandem solar cells
Energy & Environmental Science Royal Society of Chemistry 18 (2025) 7680-7694
Abstract:
Improved understanding of heterojunction interfaces has enabled multijunction photovoltaic devices to achieve power conversion efficiencies that exceed the detailed-balance limit for single-junctions. For wide-bandgap perovskites, however, the pronounced energy loss across the heterojunctions of the active and charge transport layers impedes multijunction devices from reaching their full efficiency potential. Here we find that for polycrystalline perovskite films with mixed-halide compositions, the crystal termination—a factor influencing the reactivity and density of surface sites—plays a crucial role in interfacial passivation for wide-bandgap perovskites. We demonstrate that by templating the growth of polycrystalline perovskite films toward a preferred (100) facet, we can reduce the density of deep-level trap states and enhance the binding of modification ligands. This leads to a much-improved heterojunction interface, resulting in open-circuit voltages of 1.38 V for 1.77-eV single-junction perovskite solar cells. In addition, monolithic all-perovskite double-junction solar cells achieve open-circuit voltage values of up to 2.22 V, with maximum power point tracking efficiencies reaching 28.6% and 27.7% at 0.25 and 1.0 cm2 cell areas, respectively, along with improved operational and thermal stability at 85 °C. This work provides universally applicable insights into the crystalline facet-favourable surface modification of perovskite films, advancing their performance in optoelectronic applications.Disentangling degradation pathways of narrow bandgap lead-tin perovskite material and photovoltaic devices
Nature Communications Nature Research 16:1 (2025) 5450
Abstract:
Narrow bandgap lead-tin perovskites are essential components of next-generation all-perovskite multi-junction solar cells. However, their poor stability under operating conditions hinders successful implementation. In this work, we systematically investigate the underlying mechanisms of this instability under combined heat and light stress (ISOS L-2 conditions) by measuring changes in phase, conductivity, recombination and current-voltage characteristics. We find an increased impact of the redistribution of mobile ions during device operation to be the primary driver of performance loss during stressing, with further losses caused by a slower increase in non-radiative recombination and background hole density. Crucially, the dominant degradation mode changes with different hole transport materials, which we attribute to variations in iodine vacancy generation rates. By quantifying the impact of these mechanisms on device performance, we provide critical insights for improving the operational stability of lead-tin perovskite solar cells.Enhancing radiation resilience of wide-band-gap perovskite solar cells for space applications via A-site cation stabilization with PDAI2
Joule Elsevier (2025) 102043
Abstract:
Perovskite solar cells (PSCs) for space applications have garnered significant attention due to their high tolerance to proton radiation. While the self-healing mechanism of PSCs is largely attributed to mobile inorganic halide ions, the effects of radiation on organic A-site cations remain underexplored. In this study, wide-band-gap Cs/formamidinium (FA) PSCs, which are promising for tandem applications in space environments, were subjected to harsh proton radiation testing. Photovoltaic (PV) device parameters of the PSCs measured pre- and post-irradiation demonstrated that propane-1,3-diammonium iodide (PDAI2) treatment effectively mitigates radiation-induced damage to the perovskite layer. Advanced characterization techniques, including X-ray photoelectron spectroscopy (XPS) depth profiling using femtosecond laser ablation (fs-LA) and time-of-flight elastic recoil detection analysis (ToF-ERDA), were employed to analyze the impact of proton radiation on A-site organic cations. Additionally, time-resolved Kelvin probe force microscopy (tr-KPFM) was utilized to elucidate the mechanism by which PDAI2 treatment mitigates proton-induced damage to the organic cations.Present status of and future opportunities for all-perovskite tandem photovoltaics
Nature Energy Springer Nature (2025) 1-16
Diamine surface passivation and postannealing enhance the performance of silicon-perovskite tandem solar cells
ACS Applied Materials & Interfaces American Chemical Society (2025)