The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2‑Based Solar Cells
The Journal of Physical Chemistry Letters American Chemical Society (ACS) 5:7 (2014) 1096-1102
High charge carrier mobilities and lifetimes in organolead trihalide perovskites
Advanced Materials 26:10 (2014) 1584-1589
Abstract:
Organolead trihalide perovskites are shown to exhibit the best of both worlds: charge-carrier mobilities around 10 cm2 V-1 s -1 and low bi-molecular charge-recombination constants. The ratio of the two is found to defy the Langevin limit of kinetic charge capture by over four orders of magnitude. This mechanism causes long (micrometer) charge-pair diffusion lengths crucial for flat-heterojunction photovoltaics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Controlling coverage of solution cast materials with unfavourable surface interactions
Applied Physics Letters AIP Publishing 104:9 (2014) 091602
Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells
Energy and Environmental Science 7:3 (2014) 982-988
Abstract:
Perovskite-based solar cells have attracted significant recent interest, with power conversion efficiencies in excess of 15% already superceding a number of established thin-film solar cell technologies. Most work has focused on a methylammonium lead trihalide perovskites, with a bandgaps of ∼1.55 eV and greater. Here, we explore the effect of replacing the methylammonium cation in this perovskite, and show that with the slightly larger formamidinium cation, we can synthesise formamidinium lead trihalide perovskites with a bandgap tunable between 1.48 and 2.23 eV. We take the 1.48 eV-bandgap perovskite as most suited for single junction solar cells, and demonstrate long-range electron and hole diffusion lengths in this material, making it suitable for planar heterojunction solar cells. We fabricate such devices, and due to the reduced bandgap we achieve high short-circuit currents of >23 mA cm-2, resulting in power conversion efficiencies of up to 14.2%, the highest efficiency yet for solution processed planar heterojunction perovskite solar cells. Formamidinium lead triiodide is hence promising as a new candidate for this class of solar cell. © 2014 The Royal Society of Chemistry.High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors
Journal of Physical Chemistry Letters American Chemical Society 5:8 (2014) 1421-1426