Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Overcoming ultraviolet light instability of sensitized TiO₂ with meso-superstructured organometal tri-halide perovskite solar cells.

Nat Commun 4 (2013) 2885

Authors:

Tomas Leijtens, Giles E Eperon, Sandeep Pathak, Antonio Abate, Michael M Lee, Henry J Snaith

Abstract:

The power conversion efficiency of hybrid solid-state solar cells has more than doubled from 7 to 15% over the past year. This is largely as a result of the incorporation of organometallic trihalide perovskite absorbers into these devices. But, as promising as this development is, long-term operational stability is just as important as initial conversion efficiency when it comes to the development of practical solid-state solar cells. Here we identify a critical instability in mesoporous TiO₂-sensitized solar cells arising from light-induced desorption of surface-adsorbed oxygen. We show that this instability does not arise in mesoporous TiO₂-free mesosuperstructured solar cells. Moreover, our TiO₂-free cells deliver stable photocurrent for over 1,000 h continuous exposure and operation under full spectrum simulated sunlight.
More details from the publisher
More details

The rise of solar power

MATERIALS WORLD 21:9 (2013) 28-29

Authors:

Rachel Lawler, Stuart Irvine, Stephen Tay, Henry Snaith
More details

Pore filling of spiro-OMeTAD in solid-state dye-sensitized solar cells determined via optical reflectometry

Advanced Functional Materials 22:23 (2012) 5010-5019

Authors:

P Docampo, A Hey, S Guldin, R Gunning, U Steiner, HJ Snaith

Abstract:

A simple strategy is presented to determine the pore-filling fraction of the hole-conductor 2,2-7,7-tetrakis-N,N-di-pmethoxyphenylamine-9,9- spirobifluorene (spiro-OMeTAD) into mesoporous photoanodes in solid-state dye-sensitized solar cells (ss-DSCs). Based on refractive index determination by the film's reflectance spectra and using effective medium approximations the volume fractions of the constituent materials can be extracted, hence the pore-filling fraction quantified. This non-destructive method can be used with complete films and does not require detailed model assumptions. Pore-filling fractions of up to 80% are estimated for optimized solid-state DSC photoanodes, which is higher than that previously estimated by indirect methods. Additionally, transport and recombination lifetimes as a function of the pore-filling fraction are determined using photovoltage and photocurrent decay measurements. While extended electron lifetimes are observed with increasing pore-filling fractions, no trend is found in the transport kinetics. The data suggest that a pore-filling fraction of greater than 60% is necessary to achieve optimized performance in ss-DSCs. This degree of pore-filling is even achieved in 5 μm thick mesoporous photoanodes. It is concluded that pore-filling is not a limiting factor in the fabrication of "thick" ss-DSCs with spiro-OMeTAD as the hole-conductor. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
More details from the publisher
More details

On the role of semiconducting polymer as hole-transport layer in solid-state dye sensitized solar cells

Optics InfoBase Conference Papers (2012)

Authors:

RS Santosh Kumar, G Grancini, A Petrozza, HJ Snaith, G Lanzani

Abstract:

Device optimization and ultrafast absorption spectroscopic investigations on the role of semiconducting polymer as hole-transport layer in solid-state dye sensitized solar cells suggest their dual role of dye-regeneration and light-antenna assisting in improved photoconversionefficiencies.© 2012 OSA.
More details from the publisher

Semiconducting organic polymers as hole-transport layer in solid-state dye sensitized solar cells: Comprehensive insights from femtosecond transient spectroscopy and device optimization

2012 International Conference on Fiber Optics and Photonics, PHOTONICS 2012 (2012)

Authors:

RSS Kumar, G Grancini, A Petrozza, HJ Snaith, G Lanzani

Abstract:

Device optimization and ultrafast absorption spectroscopic investigations on the role of semiconducting polymer as hole-transport layer in solid-state dye sensitized solar cells suggest their dual role of dye-regeneration and light-antenna assisting in improved photoconversion-efficiencies. © 2012 OSA.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 114
  • Page 115
  • Page 116
  • Page 117
  • Current page 118
  • Page 119
  • Page 120
  • Page 121
  • Page 122
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet