Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Stability of narrow bandgap lead-tin perovskite material and photovoltaic devices

Fundacio Scito (2024)

Authors:

Florine Rombach, Akash Dasgupta, Manuel Kober-Czerny, James Ball, Joel Smith, Heon Jin, Michael Farrer, Henry Snaith
More details from the publisher

Direct observation of phase transitions between delta- and alpha-phase FAPbI 3 via defocused Raman spectroscopy

Journal of Materials Chemistry A Royal Society of Chemistry 12:9 (2024) 5406-5413

Authors:

Bernd K Sturdza, Benjamin M Gallant, Philippe Holzhey, Elisabeth A Duijnstee, Marko W von der Leyen, Harry C Sansom, Henry J Snaith, Moritz K Riede, Robin J Nicholas

Abstract:

The ability to characterise perovskite phases non-destructively is key on the route to ensuring their long-term stability in operando. Raman spectroscopy holds the promise to play an important role in this task. Among all perovskites, formamidinium lead iodide (FAPbI3) has emerged as one of the most promising candidates for single-junction photovoltaic cells. However, Raman spectroscopy of FAPbI3 remains challenging as is evidenced by conflicting reports in the literature. Here, we demonstrate that due to the vulnerability of FAPbI3 to laser-induced degradation, the detected Raman spectrum depends strongly on the experimental conditions. This can lead to conflicting results and is revealed as the origin of discrepancies in the literature. We overcome this issue by deploying defocused Raman spectroscopy, preventing laser-induced damage to the sample and simultaneously improving the signal-to-noise ratio, allowing us to furthermore resolve much weaker Raman modes than was previously possible. We offer step-by-step instructions on how to apply this technique to a given spectrometer. Non-destructive characterisation of the FAPbI3 phases further enables us to quantify the phase stability of pristine FAPbI3 crystals and FAPbI3 grown with the high-performance additive methylenediammonium chloride (MDACl2). This shows that the neat crystals fully degrade within two weeks, whereas in samples grown with the additive only about 2% of the crystal bulk is in the δ-phase after 400 days. This establishes defocused Raman spectroscopy as a powerful tool for the characterisation of FAPbI3 and other perovskite materials.

More details from the publisher
Details from ORA
More details

Compositional Transformation and Impurity‐Mediated Optical Transitions in Co‐Evaporated Cu2AgBiI6 Thin Films for Photovoltaic Applications

Advanced Energy Materials Wiley 14:8 (2024)

Authors:

Benjamin WJ Putland, Marcello Righetto, Heon Jin, Markus Fischer, Alexandra J Ramadan, Karl‐Augustin Zaininger, Laura M Herz, Harry C Sansom, Henry J Snaith
More details from the publisher
More details

Minimizing Interfacial Recombination in 1.8 eV Triple‐Halide Perovskites for 27.5% Efficient All‐Perovskite Tandems

Advanced Materials Wiley 36:6 (2024) e2307743

Authors:

Fengjiu Yang, Philipp Tockhorn, Artem Musiienko, Felix Lang, Dorothee Menzel, Rowan Macqueen, Eike Köhnen, Ke Xu, Silvia Mariotti, Daniele Mantione, Lena Merten, Alexander Hinderhofer, Bor Li, Dan R Wargulski, Steven P Harvey, Jiahuan Zhang, Florian Scheler, Sebastian Berwig, Marcel Roß, Jarla Thiesbrummel, Amran Al‐Ashouri, Kai O Brinkmann, Thomas Riedl, Frank Schreiber, Daniel Abou‐Ras, Henry Snaith, Dieter Neher, Lars Korte, Martin Stolterfoht, Steve Albrecht
More details from the publisher
More details
More details

Multifunctional ytterbium oxide buffer for perovskite solar cells

Nature Springer Nature 625:7995 (2024) 516-522

Authors:

Peng Chen, Yun Xiao, Juntao Hu, Shunde Li, Deying Luo, Rui Su, Pietro Caprioglio, Pascal Kaienburg, Xiaohan Jia, Nan Chen, Jingjing Wu, Yanping Sui, Pengyi Tang, Haoming Yan, Tianyu Huang, Maotao Yu, Qiuyang Li, Lichen Zhao, Cheng-Hung Hou, Yun-Wen You, Jing-Jong Shyue, Dengke Wang, Xiaojun Li, Qing Zhao, Qihuang Gong, Zheng-Hong Lu, Henry J Snaith, Rui Zhu

Abstract:

Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices. A ‘buffer material’ between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber. Thus far, evaporable organic molecules and atomic-layer-deposited metal oxides have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet