Fabrication of Efficient and Stable CsPbI3 Perovskite Solar Cells through Cation Exchange Process
Advanced Energy Materials Wiley 9:36 (2019)
Microsecond Carrier Lifetimes, Controlled p-Doping, and Enhanced Air Stability in Low-Bandgap Metal Halide Perovskites.
ACS energy letters 4:9 (2019) 2301-2307
Abstract:
Mixed lead-tin halide perovskites have sufficiently low bandgaps (∼1.2 eV) to be promising absorbers for perovskite-perovskite tandem solar cells. Previous reports on lead-tin perovskites have typically shown poor optoelectronic properties compared to neat lead counterparts: short photoluminescence lifetimes (<100 ns) and low photoluminescence quantum efficiencies (<1%). Here, we obtain films with carrier lifetimes exceeding 1 μs and, through addition of small quantities of zinc iodide to the precursor solutions, photoluminescence quantum efficiencies under solar illumination intensities of 2.5%. The zinc additives also substantially enhance the film stability in air, and we use cross-sectional chemical mapping to show that this enhanced stability is because of a reduction in tin-rich clusters. By fabricating field-effect transistors, we observe that the introduction of zinc results in controlled p-doping. Finally, we show that zinc additives also enhance power conversion efficiencies and the stability of solar cells. Our results demonstrate substantially improved low-bandgap perovskites for solar cells and versatile electronic applications.Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics
Energy and Environmental Science Royal Society of Chemistry (2019)
Abstract:
We demonstrate a method for controlled p-doping of the halide perovskite surface using molecular dopants, resulting in reduced non-radiative recombination losses and improved device performance.
Impurity tracking enables enhanced control and reproducibility of hybrid perovskite vapour deposition
ACS Applied Materials and Interfaces American Chemical Society 11:32 (2019) 28851-28857
Abstract:
Metal halide perovskite semiconductors have the potential to enable low-cost, flexible and efficient solar cells for a wide range of applications. Physical vapour deposition by co-evaporation of precursors is a method which results in very smooth and pin-hole-free perovskite thin films and allows excellent control over film thickness and composition. However, for a deposition method to become industrially scalable, reproducible process control and high device yields are essential. Unfortunately, to date the control and reproducibility of evaporating organic precursors such as methylammonium iodide (MAI) has proved extremely challenging. We show that the established method of controlling the evaporation-rate of MAI with quartz micro balances (QMBs) is critically sensitive to the concentration of the impurities MAH2PO3 and MAH2PO2 that are usually present in MAI after synthesis. Therefore, controlling the deposition rate of MAI with QMBs is unreliable since the concentration of such impurities typically varies from MAI batch-to-batch and even during the course of a deposition. However once reliable control of MAI deposition is achieved, we find that the presence of precursor impurities during perovskite deposition does not degrade solar cell performance. Our results indicate that as long as precursor deposition rates are well controlled, physical vapour deposition will allow high solar cell device yields even if the purity of precursors change from run to run.Planar perovskite solar cells with long-term stability using ionic liquid additives
Nature Springer Nature 571:7764 (2019) 245-250