A green solvent system for precursor phase-engineered sequential deposition of stable formamidinium lead triiodide for perovskite solar cells
Wide‐Gap Perovskites for Indoor Photovoltaics
Unlocking interfaces in photovoltaics
Abstract:
Demand for energy in the context of climate change is driving rapid deployment of low-cost renewable energy and is accelerating efforts to deliver advanced photovoltaic (PV) technologies. In the past decade, the steeply rising solar-to-electrical power conversion efficiency of metal-halide perovskite solar cells (PSCs) make them a compelling candidate for next-generation PVs, with interesting applications envisaged beyond traditional solar plants. These include building integrated PVs, flexible solar-powered electronics, and solar vehicles and aircraft. Metal-halide perovskites benefit from the low formation energy for crystallization, a consequence of their ionic nature, which enables close to ambient-temperature solution or vapor-phase deposition and a thin-film crystallization process. However, the ease by which rapid crystallization occurs also introduces defects and local heterogeneities throughout the perovskite films and at internal interfaces, which limits their efficiency (1).Bandgap-universal passivation enables stable perovskite solar cells with low photovoltage loss
Abstract:
The efficiency and longevity of metal-halide perovskite solar cells are typically dictated by nonradiative defect-mediated charge recombination. In this work, we demonstrate a vapor-based amino-silane passivation that reduces photovoltage deficits to around 100 millivolts (>90% of the thermodynamic limit) in perovskite solar cells of bandgaps between 1.6 and 1.8 electron volts, which is crucial for tandem applications. A primary-, secondary-, or tertiary-amino–silane alone negatively or barely affected perovskite crystallinity and charge transport, but amino-silanes that incorporate primary and secondary amines yield up to a 60-fold increase in photoluminescence quantum yield and preserve long-range conduction. Amino-silane–treated devices retained 95% power conversion efficiency for more than 1500 hours under full-spectrum sunlight at 85°C and open-circuit conditions in ambient air with a relative humidity of 50 to 60%.