Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

A green solvent system for precursor phase-engineered sequential deposition of stable formamidinium lead triiodide for perovskite solar cells

(2024)

Authors:

Benjamin M Gallant, Philippe Holzhey, Joel A Smith, Saqlain Choudhary, Karim A Elmestekawy, Pietro Caprioglio, Igal Levine, Alex Sheader, Fengning Yang, Daniel TW Toolan, Rachel C Kilbride, Augustin KA Zaininger, James M Ball, M Greyson Christoforo, Nakita Noel, Laura M Herz, Dominik J Kubicki, Henry J Snaith
More details from the publisher
Details from ArXiV

Wide‐Gap Perovskites for Indoor Photovoltaics

Solar RRL Wiley 8:11 (2024)

Authors:

Gregory Burwell, Stefan Zeiske, Pietro Caprioglio, Oskar J Sandberg, Austin M Kay, Michael D Farrar, Yong Ryun Kim, Henry J Snaith, Paul Meredith, Ardalan Armin
More details from the publisher
More details

Unlocking interfaces in photovoltaics

Science American Association for the Advancement of Science 384:6698 (2024) 846-848

Authors:

Yun Xiao, Xiaoyu Yang, Rui Zhu, Henry J Snaith

Abstract:

Demand for energy in the context of climate change is driving rapid deployment of low-cost renewable energy and is accelerating efforts to deliver advanced photovoltaic (PV) technologies. In the past decade, the steeply rising solar-to-electrical power conversion efficiency of metal-halide perovskite solar cells (PSCs) make them a compelling candidate for next-generation PVs, with interesting applications envisaged beyond traditional solar plants. These include building integrated PVs, flexible solar-powered electronics, and solar vehicles and aircraft. Metal-halide perovskites benefit from the low formation energy for crystallization, a consequence of their ionic nature, which enables close to ambient-temperature solution or vapor-phase deposition and a thin-film crystallization process. However, the ease by which rapid crystallization occurs also introduces defects and local heterogeneities throughout the perovskite films and at internal interfaces, which limits their efficiency (1).
More details from the publisher
Details from ORA
More details
More details

Bandgap-universal passivation enables stable perovskite solar cells with low photovoltage loss

Science American Association for the Advancement of Science 384:6697 (2024) 767-775

Authors:

Yen-Hung Lin, Vikram, Fengning Yang, Xue-Li Cao, Akash Dasgupta, Robert DJ Oliver, Aleksander M Ulatowski, Melissa M McCarthy, Xinyi Shen, Qimu Yuan, M Greyson Christoforo, Fion Sze Yan Yeung, Michael B Johnston, Nakita K Noel, Laura M Herz, M Saiful Islam, Henry J Snaith

Abstract:

The efficiency and longevity of metal-halide perovskite solar cells are typically dictated by nonradiative defect-mediated charge recombination. In this work, we demonstrate a vapor-based amino-silane passivation that reduces photovoltage deficits to around 100 millivolts (>90% of the thermodynamic limit) in perovskite solar cells of bandgaps between 1.6 and 1.8 electron volts, which is crucial for tandem applications. A primary-, secondary-, or tertiary-amino–silane alone negatively or barely affected perovskite crystallinity and charge transport, but amino-silanes that incorporate primary and secondary amines yield up to a 60-fold increase in photoluminescence quantum yield and preserve long-range conduction. Amino-silane–treated devices retained 95% power conversion efficiency for more than 1500 hours under full-spectrum sunlight at 85°C and open-circuit conditions in ambient air with a relative humidity of 50 to 60%.

More details from the publisher
Details from ORA
More details
More details

The Role of Chemical Composition in Determining the Charge‐Carrier Dynamics in (AgI)x(BiI3)y Rudorffites

Advanced Functional Materials Wiley (2024) 2315942

Authors:

Snigdha Lal, Marcello Righetto, Benjamin WJ Putland, Harry C Sansom, Silvia G Motti, Heon Jin, Michael B Johnston, Henry J Snaith, Laura M Herz

Abstract:

Silver‐bismuth‐based perovskite‐inspired materials (PIMs) are increasingly being explored as non‐toxic materials in photovoltaic applications. However, many of these materials exhibit an ultrafast localization of photogenerated charge carriers that is detrimental for charge‐carrier extraction. In this work, such localization processes are explored for thermally evaporated thin films of compositions lying along the (AgI)x(BiI3)y series, namely BiI3, AgBi2I7, AgBiI4, Ag2BiI5, Ag3BiI6, and AgI, to investigate the impact of changing Ag+/Bi3+ content. A persistent presence of ultrafast charge‐carrier localization in all mixed compositions and BiI3, together with unusually broad photoluminescence spectra, reveal that eliminating silver will not suppress the emergence of a localized state. A weak change in electronic bandgap and charge‐carrier mobility reveals the resilience of the electronic band structure upon modifications in the Ag+/Bi3+ composition of the mixed‐metal rudorffites. Instead, chemical composition impacts the charge‐carrier dynamics indirectly via structural alterations: Ag‐deficient compositions demonstrate stronger charge‐carrier localization most likely because a higher density of vacant sites in the cationic sublattice imparts enhanced lattice softness. Unraveling such delicate interplay between chemical composition, crystal structure, and charge‐carrier dynamics in (AgI)x(BiI3)y rudorffites provides crucial insights for developing a material‐by‐design approach in the quest for highly efficient Bi‐based PIMs.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet