Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells.

Angewandte Chemie (International ed. in English) 54:11 (2015) 3240-3248

Authors:

Samuel D Stranks, Pabitra K Nayak, Wei Zhang, Thomas Stergiopoulos, Henry J Snaith

Abstract:

Organic-inorganic perovskites are currently one of the hottest topics in photovoltaic (PV) research, with power conversion efficiencies (PCEs) of cells on a laboratory scale already competing with those of established thin-film PV technologies. Most enhancements have been achieved by improving the quality of the perovskite films, suggesting that the optimization of film formation and crystallization is of paramount importance for further advances. Here, we review the various techniques for film formation and the role of the solvents and precursors in the processes. We address the role chloride ions play in film formation of mixed-halide perovskites, which is an outstanding question in the field. We highlight the material properties that are essential for high-efficiency operation of solar cells, and identify how further improved morphologies might be achieved.
More details from the publisher
More details
More details

Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy

The Journal of Physical Chemistry C American Chemical Society (ACS) 119:7 (2015) 3456-3465

Authors:

Adam Pockett, Giles E Eperon, Timo Peltola, Henry J Snaith, Alison Walker, Laurence M Peter, Petra J Cameron
More details from the publisher

Highly efficient perovskite solar cells with tunable structural color

Nano Letters American Chemical Society 15:3 (2015) 1698-1702

Authors:

W Zhang, M Anaya, G Lozano, ME Calvo, Michael Johnston, H Míguez, Henry Snaith

Abstract:

The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources.
More details from the publisher
Details from ORA
More details
More details

Crystallization kinetics of organic-inorganic trihalide perovskites and the role of the lead anion in crystal growth.

Journal of the American Chemical Society 137:6 (2015) 2350-2358

Authors:

David T Moore, Hiroaki Sai, Kwan W Tan, Detlef-M Smilgies, Wei Zhang, Henry J Snaith, Ulrich Wiesner, Lara A Estroff

Abstract:

Methylammonium lead halide perovskite solar cells continue to excite the research community due to their rapidly increasing performance which, in large part, is due to improvements in film morphology. The next step in this progression is control of the crystal morphology which requires a better fundamental understanding of the crystal growth. In this study we use in situ X-ray scattering data to study isothermal transformations of perovskite films derived from chloride, iodide, nitrate, and acetate lead salts. Using established models we determine the activation energy for crystallization and find that it changes as a function of the lead salt. Further analysis enabled determination of the precursor composition and showed that the primary step in perovskite formation is removal of excess organic salt from the precursor. This understanding suggests that careful choice of the lead salt will aid in controlling crystal growth, leading to superior films and better performing solar cells.
More details from the publisher
More details
More details

Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer.

The journal of physical chemistry letters 6:3 (2015) 432-437

Authors:

Simone Guarnera, Antonio Abate, Wei Zhang, Jamie M Foster, Giles Richardson, Annamaria Petrozza, Henry J Snaith

Abstract:

Hybrid perovskites represent a new paradigm for photovoltaics, which have the potential to overcome the performance limits of current technologies and achieve low cost and high versatility. However, an efficiency drop is often observed within the first few hundred hours of device operation, which could become an important issue. Here, we demonstrate that the electrode's metal migrating through the hole transporting material (HTM) layer and eventually contacting the perovskite is in part responsible for this early device degradation. We show that depositing the HTM within an insulating mesoporous "buffer layer" comprised of Al2O3 nanoparticles prevents the metal electrode migration while allowing for precise control of the HTM thickness. This enables an improvement in the solar cell fill factor and prevents degradation of the device after 350 h of operation.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 92
  • Page 93
  • Page 94
  • Page 95
  • Current page 96
  • Page 97
  • Page 98
  • Page 99
  • Page 100
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet