Probing the local electronic structure in metal halide perovskites through cobalt substitution (Small Methods 6/2023)
Abstract:
Inside Front CoverIn article number 2300095, Hesjedal and co-workers demonstrate that the substitution of Co2+ ions into the halide perovskite imparts magnetic behavior to the material while maintaining photovoltaic performance. We utilize the Co2+ ions (shown as robots) themselves as probes to sense the local electronic environment of lead in the perovskite, thereby opening the substitution gateway for developing novel functional perovskite materials and devices for future technologies.
Ultranarrow linewidth room-temperature single-photon source from perovskite quantum dot embedded in optical microcavity
Photovoltaic performance of FAPbI3 perovskite is hampered by intrinsic quantum confinement
Abstract:
Formamidinium lead trioiodide (FAPbI3) is a promising perovskite for single-junction solar cells. However, FAPbI3 is metastable at room temperature and can cause intrinsic quantum confinement effects apparent through a series of above-bandgap absorption peaks. Here, we explore three common solution-based film-fabrication methods, neat N,N-dimethylformamide (DMF)–dimethyl sulfoxide (DMSO) solvent, DMF-DMSO with methylammonium chloride, and a sequential deposition approach. The latter two offer enhanced nucleation and crystallization control and suppress such quantum confinement effects. We show that elimination of these absorption features yields increased power conversion efficiencies (PCEs) and short-circuit currents, suggesting that quantum confinement hinders charge extraction. A meta-analysis of literature reports, covering 244 articles and 825 photovoltaic devices incorporating FAPbI3 films corroborates our findings, indicating that PCEs rarely exceed a 20% threshold when such absorption features are present. Accordingly, ensuring the absence of these absorption features should be the first assessment when designing fabrication approaches for high-efficiency FAPbI3 solar cells.