Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Thermally stable perovskite solar cells by all-vacuum deposition

ACS Applied Materials and Interfaces American Chemical Society 15:1 (2022) 772-781

Abstract:

Vacuum deposition is a solvent-free method suitable for growing thin films of metal halide perovskite (MHP) semiconductors. However, most reports of high-efficiency solar cells based on such vacuum-deposited MHP films incorporate solution-processed hole transport layers (HTLs), thereby complicating prospects of industrial upscaling and potentially affecting the overall device stability. In this work, we investigate organometallic copper phthalocyanine (CuPc) and zinc phthalocyanine (ZnPc) as alternative, low-cost, and durable HTLs in all-vacuum-deposited solvent-free formamidinium-cesium lead triodide [CH(NH2)2]0.83Cs0.17PbI3 (FACsPbI3) perovskite solar cells. We elucidate that the CuPc HTL, when employed in an “inverted” p–i–n solar cell configuration, attains a solar-to-electrical power conversion efficiency of up to 13.9%. Importantly, unencapsulated devices as large as 1 cm2 exhibited excellent long-term stability, demonstrating no observable degradation in efficiency after more than 5000 h in storage and 3700 h under 85 °C thermal stressing in N2 atmosphere.

More details from the publisher
Details from ORA
More details
More details
More details

Efficient inverted perovskite solar cells via improved sequential deposition

Advanced Materials Wiley 35:5 (2022) 2206345

Authors:

Peng Chen, Yun Xiao, Lei Li, Lichen Zhao, Maotao Yu, Shunde Li, Juntao Hu, Bin Liu, Yingguo Yang, Deying Luo, Cheng-Hung Hou, Xugang Guo, Jing-Jong Shyue, Zheng-Hong Lu, Qihuang Gong, Henry J Snaith, Rui Zhu

Abstract:

Inverted-structure metal halide perovskite solar cells (PSCs) have attractive advantages like low-temperature processability and outstanding device stability. The two-step sequential deposition method shows the benefits of easy fabrication and decent performance repeatability. Nevertheless, it is still challenging to achieve high-performance inverted PSCs with similar or equal power conversion efficiencies (PCEs) compared to the regular-structure counterparts via this deposition method. Here, an improved two-step sequential deposition technique is demonstrated via treating the bottom organic hole-selective layer with the binary modulation system composed of a polyelectrolyte and an ammonium salt. Such improved sequential deposition method leads to the spontaneous refinement of up and buried interfaces for the perovskite films, contributing to high film quality with significantly reduced defect density and better charge transportation. As a result, the optimized PSCs show a large enhancement in the open-circuit voltage by 100 mV and a dramatic lift in the PCE from 18.1% to 23.4%, delivering the current state-of-the-art performances for inverted PSCs. Moreover, good operational and thermal stability is achieved upon the improved inverted PSCs. This innovative strategy helps gain a deeper insight into the perovskite crystal growth and defect modulation in the inverted PSCs based on the two-step sequential deposition method.
More details from the publisher
Details from ORA
More details
More details

Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells

Nature Materials Springer Nature 22:1 (2022) 73-83

Authors:

David P McMeekin, Philippe Holzhey, Sebastian O Fürer, Steven P Harvey, Laura T Schelhas, James M Ball, Suhas Mahesh, Seongrok Seo, Nicholas Hawkins, Jianfeng Lu, Michael B Johnston, Joseph J Berry, Udo Bach, Henry J Snaith

Abstract:

Achieving the long-term stability of perovskite solar cells is arguably the most important challenge required to enable widespread commercialization. Understanding the perovskite crystallization process and its direct impact on device stability is critical to achieving this goal. The commonly employed dimethyl-formamide/dimethyl-sulfoxide solvent preparation method results in a poor crystal quality and microstructure of the polycrystalline perovskite films. In this work, we introduce a high-temperature dimethyl-sulfoxide-free processing method that utilizes dimethylammonium chloride as an additive to control the perovskite intermediate precursor phases. By controlling the crystallization sequence, we tune the grain size, texturing, orientation (corner-up versus face-up) and crystallinity of the formamidinium (FA)/caesium (FA)yCs1–yPb(IxBr1–x)3 perovskite system. A population of encapsulated devices showed improved operational stability, with a median T80 lifetime (the time over which the device power conversion efficiency decreases to 80% of its initial value) for the steady-state power conversion efficiency of 1,190 hours, and a champion device showed a T80 of 1,410 hours, under simulated sunlight at 65 °C in air, under open-circuit conditions. This work highlights the importance of material quality in achieving the long-term operational stability of perovskite optoelectronic devices.
More details from the publisher
Details from ORA
More details
More details

Ethylenediamine addition improves performance and suppresses phase instabilities in mixed-halide perovskites

ACS Energy Letters American Chemical Society 7:12 (2022) 4265-4273

Authors:

Margherita Taddei, Joel A Smith, Benjamin M Gallant, Suer Zhou, Robert JE Westbrook, Yangwei Shi, Jian Wang, James N Drysdale, Declan P McCarthy, Stephen Barlow, Seth R Marder, Henry J Snaith, David S Ginger

Abstract:

We show that adding ethylenediamine (EDA) to perovskite precursor solutions improves the photovoltaic device performance and material stability of high-bromide-content, methylammonium-free, formamidinium cesium lead halide perovskites FA1–xCsxPb(I1–yBry)3, which are currently of interest for perovskite-on-Si tandem solar cells. Using spectroscopy and hyperspectral microscopy, we show that the additive improves film homogeneity and suppresses the phase instability that is ubiquitous in high-Br perovskite formulations, producing films that remain stable for over 100 days in ambient conditions. With the addition of 1 mol % EDA, we demonstrate 1.69 eV-gap perovskite single-junction p-i-n devices with a VOC of 1.22 V and a champion maximum-power-point-tracked power conversion efficiency of 18.8%, comparable to the best reported methylammonium-free perovskites. Using nuclear magnetic resonance (NMR) spectroscopy and X-ray diffraction techniques, we show that EDA reacts with FA+ in solution, rapidly and quantitatively forming imidazolinium cations. It is the presence of imidazolinium during crystallization which drives the improved perovskite thin-film properties.

More details from the publisher
Details from ORA
More details

Suppressing interfacial recombination with a strong-interaction surface modulator for efficient inverted perovskite solar cells

Advanced Energy Materials Wiley 12:48 (2022) 2202868

Authors:

Bowei Li, Jun Deng, Joel A Smith, Pietro Caprioglio, Kangyu Ji, Deying Luo, James D McGettrick, KDG Imalka Jayawardena, Rachel C Kilbride, Aobo Ren, Steven Hinder, Jinxin Bi, Thomas Webb, Igor Marko, Xueping Liu, Yuren Xiang, Josh Reding, Hui Li, Shixuan Du, David G Lidzey, Samuel D Stranks, Trystan Watson, Stephen Sweeney, Henry J Snaith, S Ravi P Silva, Wei Zhang

Abstract:

Successful manipulation of halide perovskite surfaces is typically achieved via the interactions between modulators and perovskites. Herein, it is demonstrated that a strong-interaction surface modulator is beneficial to reduce interfacial recombination losses in inverted (p-i-n) perovskite solar cells (IPSCs). Two organic ammonium salts are investigated, consisting of 4-hydroxyphenethylammonium iodide and 2-thiopheneethylammonium iodide (2-TEAI). Without thermal annealing, these two modulators can recover the photoluminescence quantum yield of the neat perovskite film in contact with fullerene electron transport layer (ETL). Compared to the hydroxyl-functionalized phenethylammonium moiety, the thienylammonium facilitates the formation of a quasi-2D structure onto the perovskite. Density functional theory and quasi-Fermi level splitting calculations reveal that the 2-TEAI has a stronger interaction with the perovskite surface, contributing to more suppressed non-radiative recombination at the perovskite/ETL interface and improved open-circuit voltage (VOC) of the fabricated IPSCs. As a result, the VOC increases from 1.11 to 1.20 V (based on a perovskite bandgap of 1.63 eV), yielding a power conversion efficiency (PCE) from ≈20% to 21.9% (stabilized PCE of 21.3%, the highest reported PCEs for IPSCs employing poly[N,N′′-bis(4-butylphenyl)-N,N′′-bis(phenyl)benzidine] as the hole transport layer, alongside the enhanced operational and shelf-life stability for unencapsulated devices.

More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • Current page 20
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet