Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Steering perovskite precursor solutions for multijunction photovoltaics

Nature Nature Research (2024)

Authors:

Shuaifeng Hu, Junke Wang, Pei Zhao, Jorge Pascual, Jianan Wang, Florine Rombach, Akash Dasgupta, Wentao Liu, Minh Anh Truong, He Zhu, Manuel Kober-Czerny, James N Drysdale, Joel A Smith, Zhongcheng Yuan, Guus JW Aalbers, Nick RM Schipper, Jin Yao, Kyohei Nakano, Silver-Hamill Turren-Cruz, André Dallmann, M Greyson Christoforo, James M Ball, David P McMeekin, Karl-Augustin Zaininger, Zonghao Liu, Nakita K Noel, Keisuke Tajima, Wei Chen, Masahiro Ehara, René AJ Janssen, Atsushi Wakamiya, Henry J Snaith

Abstract:

Multijunction photovoltaics (PVs) are gaining prominence owing to their superior capability of achieving power conversion efficiencies (PCEs) beyond the radiative limit of single-junction cells<sup>1-8</sup>, where improving narrow bandgap tin-lead perovskites is critical for thin-film devices<sup>9</sup>. With a focus on understanding the chemistry of tin-lead perovskite precursor solutions, we herein find that Sn(II) species dominate interactions with precursors and additives and uncover the exclusive role of carboxylic acid in regulating solution colloidal properties and film crystallisation, and ammonium in improving film optoelectronic properties. Materials that combine these two function groups, amino acid salts, considerably improve the semiconducting quality and homogeneity of perovskite films, surpassing the effect of the individual functional groups when introduced as part of separate molecules. Our enhanced tin-lead perovskite layer allows us to fabricate solar cells with PCEs of 23.9, 29.7 (certified 29.26%), and 28.7% for single-, double-, and triple-junction devices, respectively. Our 1-cm<sup>2</sup> triple-junction devices show PCEs of 28.4% (certified 27.28%). Encapsulated triple-junction cells maintain 80% of their initial efficiencies after 860 h maximum power point tracking in ambient. We further fabricate quadruple-junction devices and obtain PCEs of 27.9% with the highest open-circuit voltage of 4.94 V. This work establishes a new benchmark for multijunction PVs.
More details from the publisher
Details from ORA
More details
More details

Diamine Surface Passivation and Post-Annealing Enhance Performance of Silicon-Perovskite Tandem Solar Cells

(2024)

Authors:

Margherita Taddei, Hannah Contreras, Hai-Nam Doan, Declan P McCarthy, Seongrok Seo, Robert JE Westbrook, Daniel J Graham, Kunal Datta, Perrine Carroy, Delfina Muñoz, Juan-Pablo Correa-Baena, Stephen Barlow, Seth R Marder, Joel A Smith, Henry J Snaith, David S Ginger
More details from the publisher

Impact of Indium Doping in Lead-Free (CH3NH3)3Bi2–x In x I9 Perovskite Photovoltaics for Indoor and Outdoor Light Harvesting

ACS Applied Electronic Materials American Chemical Society (ACS) 6:11 (2024) 8360-8368

Authors:

Ramesh Kumar, Hairui Liu, Seyed Ali Nabavi, Moses S Anyebe, Suhas Mahesh, Henry Snaith, Monojit Bag, Sagar M Jain
More details from the publisher
More details

A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells

Nature Communications Nature Research 15:1 (2024) 10110

Authors:

Benjamin M Gallant, Philippe Holzhey, Joel A Smith, Saqlain Choudhary, Karim A Elmestekawy, Pietro Caprioglio, Igal Levine, Alexandra A Sheader, Esther Y-H Hung, Fengning Yang, Daniel TW Toolan, Rachel C Kilbride, Karl-Augustin Zaininger, James M Ball, M Greyson Christoforo, Nakita K Noel, Laura M Herz, Dominik J Kubicki, Henry J Snaith

Abstract:

Perovskite solar cells (PSCs) offer an efficient, inexpensive alternative to current photovoltaic technologies, with the potential for manufacture via high-throughput coating methods. However, challenges for commercial-scale solution-processing of metal-halide perovskites include the use of harmful solvents, the expense of maintaining controlled atmospheric conditions, and the inherent instabilities of PSCs under operation. Here, we address these challenges by introducing a high volatility, low toxicity, biorenewable solvent system to fabricate a range of 2D perovskites, which we use as highly effective precursor phases for subsequent transformation to α-formamidinium lead triiodide (α-FAPbI3), fully processed under ambient conditions. PSCs utilising our α-FAPbI3 reproducibly show remarkable stability under illumination and elevated temperature (ISOS-L-2) and “damp heat” (ISOS-D-3) stressing, surpassing other state-of-the-art perovskite compositions. We determine that this enhancement is a consequence of the 2D precursor phase crystallisation route, which simultaneously avoids retention of residual low-volatility solvents (such as DMF and DMSO) and reduces the rate of degradation of FA+ in the material. Our findings highlight both the critical role of the initial crystallisation process in determining the operational stability of perovskite materials, and that neat FA+-based perovskites can be competitively stable despite the inherent metastability of the α-phase.
More details from the publisher
Details from ORA
More details
More details

Impact of Ion Migration on the Performance and Stability of Perovskite‐Based Tandem Solar Cells

Advanced Energy Materials Wiley (2024)

Authors:

Sahil Shah, Fengjiu Yang, Eike Köhnen, Esma Ugur, Mark Khenkin, Jarla Thiesbrummel, Bor Li, Lucas Holte, Sebastian Berwig, Florian Scherler, Paria Forozi, Jonas Diekmann, Francisco Peña‐Camargo, Marko Remec, Nikhil Kalasariya, Erkan Aydin, Felix Lang, Henry Snaith, Dieter Neher, Stefaan De Wolf, Carolin Ulbrich, Steve Albrecht, Martin Stolterfoht
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet