Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Wide‐Gap Perovskites for Indoor Photovoltaics

Solar RRL Wiley 8:11 (2024)

Authors:

Gregory Burwell, Stefan Zeiske, Pietro Caprioglio, Oskar J Sandberg, Austin M Kay, Michael D Farrar, Yong Ryun Kim, Henry J Snaith, Paul Meredith, Ardalan Armin
More details from the publisher
More details

Unlocking interfaces in photovoltaics

Science American Association for the Advancement of Science 384:6698 (2024) 846-848

Authors:

Yun Xiao, Xiaoyu Yang, Rui Zhu, Henry J Snaith

Abstract:

Demand for energy in the context of climate change is driving rapid deployment of low-cost renewable energy and is accelerating efforts to deliver advanced photovoltaic (PV) technologies. In the past decade, the steeply rising solar-to-electrical power conversion efficiency of metal-halide perovskite solar cells (PSCs) make them a compelling candidate for next-generation PVs, with interesting applications envisaged beyond traditional solar plants. These include building integrated PVs, flexible solar-powered electronics, and solar vehicles and aircraft. Metal-halide perovskites benefit from the low formation energy for crystallization, a consequence of their ionic nature, which enables close to ambient-temperature solution or vapor-phase deposition and a thin-film crystallization process. However, the ease by which rapid crystallization occurs also introduces defects and local heterogeneities throughout the perovskite films and at internal interfaces, which limits their efficiency (1).
More details from the publisher
Details from ORA
More details
More details

Bandgap-universal passivation enables stable perovskite solar cells with low photovoltage loss

Science American Association for the Advancement of Science 384:6697 (2024) 767-775

Authors:

Yen-Hung Lin, Vikram, Fengning Yang, Xue-Li Cao, Akash Dasgupta, Robert DJ Oliver, Aleksander M Ulatowski, Melissa M McCarthy, Xinyi Shen, Qimu Yuan, M Greyson Christoforo, Fion Sze Yan Yeung, Michael B Johnston, Nakita K Noel, Laura M Herz, M Saiful Islam, Henry J Snaith

Abstract:

The efficiency and longevity of metal-halide perovskite solar cells are typically dictated by nonradiative defect-mediated charge recombination. In this work, we demonstrate a vapor-based amino-silane passivation that reduces photovoltage deficits to around 100 millivolts (>90% of the thermodynamic limit) in perovskite solar cells of bandgaps between 1.6 and 1.8 electron volts, which is crucial for tandem applications. A primary-, secondary-, or tertiary-amino–silane alone negatively or barely affected perovskite crystallinity and charge transport, but amino-silanes that incorporate primary and secondary amines yield up to a 60-fold increase in photoluminescence quantum yield and preserve long-range conduction. Amino-silane–treated devices retained 95% power conversion efficiency for more than 1500 hours under full-spectrum sunlight at 85°C and open-circuit conditions in ambient air with a relative humidity of 50 to 60%.

More details from the publisher
Details from ORA
More details
More details

Unraveling loss mechanisms arising from energy-level misalignment between metal halide perovskites and hole transport layers

Advanced Functional Materials Wiley 34:30 (2024) 2401052

Authors:

Jae Eun Lee, Silvia G Motti, Robert DJ Oliver, Siyu Yan, Henry J Snaith, Michael B Johnston, Laura M Herz

Abstract:

Metal halide perovskites are promising light absorbers for multijunction photovoltaic applications because of their remarkable bandgap tunability, achieved through compositional mixing on the halide site. However, poor energy-level alignment at the interface between wide-bandgap mixed-halide perovskites and charge-extraction layers still causes significant losses in solar-cell performance. Here, the origin of such losses is investigated, focusing on the energy-level misalignment between the valence band maximum and the highest occupied molecular orbital (HOMO) for a commonly employed combination, FA0.83Cs0.17Pb(I1-xBrx)3 with bromide content x ranging from 0 to 1, and poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). A combination of time-resolved photoluminescence spectroscopy and numerical modeling of charge-carrier dynamics reveals that open-circuit voltage (VOC) losses associated with a rising energy-level misalignment derive from increasing accumulation of holes in the HOMO of PTAA, which then subsequently recombine non-radiatively across the interface via interfacial defects. Simulations assuming an ideal choice of hole-transport material to pair with FA0.83Cs0.17Pb(I1-xBrx)3 show that such VOC losses originating from energy-level misalignment can be reduced by up to 70 mV. These findings highlight the urgent need for tailored charge-extraction materials exhibiting improved energy-level alignment with wide-bandgap mixed-halide perovskites to enable solar cells with improved power conversion efficiencies.

More details from the publisher
Details from ORA
More details

Engineered charge transport layers for improving indoor perovskite photovoltaic performance

Journal of Physics Energy IOP Publishing 6:2 (2024) 025014

Authors:

Ram Datt, Pietro Caprioglio, Saqlain Choudhary, Weixia Lan, Henry Snaith, Chung Tsoi
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet