Assessment of soil impacts from lead release by lead-halide perovskite solar cells based on outdoor leaching tests
EES Solar Royal Society of Chemistry (RSC) (2025)
Abstract:
Perovskite solar cells represent a promising technology in the photovoltaic industry due to their high power conversion efficiency, potential for cost-effective manufacturing and versatile applications. The most stable and efficient... Perovskite solar cells represent a promising technology in the photovoltaic industry due to their high power conversion efficiency, potential for cost-effective manufacturing and versatile applications. The most stable and efficient perovskites to date rely on lead (Pb), raising concerns about leaching into the environment; however Pb release so far has only been quantified under laboratory conditions, and no field-based assessment under real outdoor expsosure has yet evaluated this risk. The present study quantified Pb leaching from various metal-halide perovskite compositions, device stacks and encapsulation approaches in a rooftop installation for up to 9 months. Pb leaching was low across all tested configurations, even in intentionally damaged materials. Glass-glass encapsulated tandem devices shattered by hail and plastic-encapsulated samples damaged by 100 µm pinholes released only 0.07% ± 0.01% and 0.15% ± 0.14% of their initial Pb, respectively, likely due to the slow diffusion of Pb cations in water. The highest leaching (4.80% ± 0.02%) occurred in unlaminated laboratory devices, demonstrating the importance of proper lamination. A self-developed freeware web tool was used to calculate predicted soil concentrations and evaluate potential impacts. Even for unlaminated devices, concentrations would only slightly exceed natural background levels (5.6 mg/kg increase), with negligible effects on soil fertility. A hypothetical worst-case scenario assuming a 1,000 nm thick perovskite layer and complete Pb leaching onto a narrow strip of soil predicted a negative impact on soil fertility; however remediation would still not be required under Swiss environmental regulations. Overall, current industry-standard encapsulation limits Pb leaching to levels that almost completely mitigate negative impacts on soil health.Steering perovskite precursor solutions for multijunction photovoltaics
Nature Nature Research (2024)
Abstract:
Multijunction photovoltaics (PVs) are gaining prominence owing to their superior capability of achieving power conversion efficiencies (PCEs) beyond the radiative limit of single-junction cells<sup>1-8</sup>, where improving narrow bandgap tin-lead perovskites is critical for thin-film devices<sup>9</sup>. With a focus on understanding the chemistry of tin-lead perovskite precursor solutions, we herein find that Sn(II) species dominate interactions with precursors and additives and uncover the exclusive role of carboxylic acid in regulating solution colloidal properties and film crystallisation, and ammonium in improving film optoelectronic properties. Materials that combine these two function groups, amino acid salts, considerably improve the semiconducting quality and homogeneity of perovskite films, surpassing the effect of the individual functional groups when introduced as part of separate molecules. Our enhanced tin-lead perovskite layer allows us to fabricate solar cells with PCEs of 23.9, 29.7 (certified 29.26%), and 28.7% for single-, double-, and triple-junction devices, respectively. Our 1-cm<sup>2</sup> triple-junction devices show PCEs of 28.4% (certified 27.28%). Encapsulated triple-junction cells maintain 80% of their initial efficiencies after 860 h maximum power point tracking in ambient. We further fabricate quadruple-junction devices and obtain PCEs of 27.9% with the highest open-circuit voltage of 4.94 V. This work establishes a new benchmark for multijunction PVs.Probing ionic conductivity and electric field screening in perovskite solar cells: a novel exploration through ion drift currents †
Energy & Environmental Science Royal Society of Chemistry (2024)
Abstract:
It is widely accepted that mobile ions are responsible for the slow electronic responses observed in metal halide perovskite-based optoelectronic devices, and strongly influence long-term operational stability. Electrical characterisation methods mostly observe complex indirect effects of ions on bulk/interface recombination, struggle to quantify the ion density and mobility, and are typically not able to fully quantify the influence of the ions upon the bulk and interfacial electric fields. We analyse the bias-assisted charge extraction (BACE) method for the case of a screened bulk electric field, and introduce a new characterisation method based on BACE, termed ion drift BACE. We reveal that the initial current density and current decay dynamics depend on the ion conductivity, which is the product of ion density and mobility. This means that for an unknown high ion density, typical in perovskite solar absorber layers, the mobility cannot be directly obtained from BACE measurements. We derive an analytical model to illustrate the relation between current density, conductivity and bulk field screening, supported by drift–diffusion simulations. By measuring the ion density independently with impedance spectroscopy, we show how the ion mobility can be derived from the BACE ion conductivity. We highlight important differences between the low- and high-ion density cases, which reveal whether the bulk electric field is fully screened or not. Our work clarifies the complex ion-related processes occurring within perovskite solar cells and gives new insight into the operational principles of halide perovskite devices as mixed ionic–electronic conductors.Coherent growth of high-Miller-index facets enhances perovskite solar cells
Nature Springer Nature 635:8040 (2024) 874-881
Diamine Surface Passivation and Post-Annealing Enhance Performance of Silicon-Perovskite Tandem Solar Cells
(2024)