Pentafluorobenzene end-group as a versatile handle for parafluoro click functionalization of polythiophenes
Chemical Science Royal Society of Chemistry 8:3 (2016) 2215-2225
Abstract:
A convenient method of introducing pentafluorobenzene (PFB) as a single end-group in polythiophene derivatives is reported via in situ quenching of the polymerization. We demonstrate that the PFB-group is a particularly useful end-group due to its ability to undergo fast nucleophilic aromatic substitutions. Using this molecular handle, we are able to quantitatively tether a variety of common nucleophiles to the polythiophene backbone. The mild conditions required for the reaction allows sensitive functional moieties, such as biotin or a cross-linkable trimethoxysilane, to be introduced as end-groups. The high yield enabled the formation of a diblock rod-coil polymer from equimolar reactants under transition metal-free conditions at room temperature. We further demonstrate that water soluble polythiophenes end-capped with PFB can be prepared via the hydrolysis of an ester precursor, and that such polymers are amenable to functionalization under aqueous conditions.Heteroatomic conjugated polymers and the spectral tuning of electroluminescence via a supramolecular coordination strategy
Macromolecular Rapid Communications Wiley 37:22 (2016) 1807-1813
Abstract:
The unique electronic structures of heteroatomic conjugated polymers (HCPs) offer an attractive platform to tune optoelectronic properties via a supramolecular coordination strategy. This study reports on an sp(2) nitrogen heteroatom containing fluorene-based copolymer namely poly(9,9-dioctylfluorene-co-9,9-dioctyldiazafluoren-2,7-yl) (PF8-co-DAF8), with ≈20% DAF8 units. Tuning the optoelectronic properties of PF8-co-DAF8 via supramolecular coordination with a Lewis acid (B(C6 F5 )3 or AlCl3 ) is explored. Formation of either the PF8-co-DAF8-B(C6 F5 )3 or PF8-co-DAF8-AlCl3 adducts reduces the optical gap and causes an attendant redshift of the photoluminescence spectra. Controlling the degree and strength of the coordination allows the emission color to be tuned from blue through to green and yellow. This strategy is successfully implemented for polymer light-emitting diodes, confirming the large degree of spectral tuning whilst maintaining good device performance. Maximum luminous efficiencies, η ≈ 1.55 cd A(-1) @ 2120 cd m(-2) , 1.32 cd A(-1) @ 1424 cd m(-2) , and 2.56 cd A(-1) @ 910 cd m(-2) are, respectively, recorded for the blue-emitting diodes with Commission Internationale de L'Eclairage (CIE) (x, y) coordinates = (0.16, 0.16), the white-emitting diodes with CIE (x, y) = (0.28, 0.38) and the green-emitting diodes with CIE (x, y) = (0.33, 0.52). The results highlight the versatility of the supramolecular coordination strategy in modifying the electronic structure of HCPs.Supramolecular polymer–molecule complexes as gain media for ultraviolet lasers
ACS Macro Letters American Chemical Society 5:8 (2016) 967-971
Abstract:
A novel supramolecular system comprising a complex of 9,9′-diphenyl-9H,9′H-2,2′-bifluorene-9,9′-diol (DPFOH) with poly(methyl methacrylate) (PMMA) is presented as an attractive system for optical gain in the ultraviolet. The analogue compound 9,9′-diphenyl-9H,9′H-2,2′-bifluorene (DPFO8) without an -OH substituent was synthesized alongside DPFOH to confirm the importance of its chemical structure to the thin-film microstructure. A hydrogen-bonding interaction allows the molecule such as DPFOH and a combination of DPFOH and PMMA to have an excellent solution-processed high quality coating film. In stark contrast to the DPFO8 system, we find that the addition of 1 wt % DPFOH to PMMA leads to spontaneous formation of a supramolecular complex via hydrogen bonding interactions, giving rise to a homogeneous film with relatively high photoluminescence quantum efficiency ∼38 (±5)%. The demonstration of ultraviolet laser action with peak wavelength emission at 385 nm provided further evidence of the high optical quality of the DPFOH/PMMA supramolecular complex films. The DPFOH/PMMA supramolecular complex has great potential for use in low-cost solution-processed optoelectronic devices.Current Voltage Characteristics of a Metallic Structure for a Hot-Carrier Photovoltaic Cell
Institute of Electrical and Electronics Engineers (IEEE) (2016) 1043-1046
Optoelectronic characterization of carrier extraction in a hot carrier photovoltaic cell structure
Journal of Optics IOP Publishing 18:7 (2016) 074003-074003