Links between satellite retrieved aerosol and precipitation
Atmos. Chem. Phys. Discuss. 14 (2014) 6821-6861
Abstract:
Many theories have been proposed detailing how aerosols might impact precipitation, predicting both increases and decreases depending on the prevailing meteorological conditions and aerosol type. In convective clouds, increased aerosol concentrations have been speculated to invigorate convective activity. Previous studies have shown large increases in precipitation with increasing aerosol optical depth, concluding an aerosol effect on precipitation. Our analysis reveals that these studies may have been influenced by cloud effects on the retrieved aerosol, as well as by meteorological covariations. We use a regime-based approach to separate out different cloud regimes, allowing the study of aerosol-cloud interactions in individual cloud regimes. We account for the influence of cloud properties on the aerosol retrieval and make use of the diurnal sampling of the TRMM satellite and the TRMM merged precipitation product to investigate the precipitation development. We find that whilst there is little effect on precipitation at the time of the aerosol retrieval, there is an increase in precipitation from cloud in high aerosol environments in the 6 h after the aerosol retrieval, consistent with the invigoration hypothesis. Increases in lightning flash count with increased aerosol are also observed in this period. The invigoration effect appears to be dependent on the cloud top temperature, with clouds with tops colder than 0 °C showing increases in precipitation at times after the retrieval as well as increases in wet scavenging. Warm clouds show little change in precipitation development with increasing aerosol, suggesting ice processes are important for the invigoration of precipitation.An AeroCom assessment of black carbon in Arctic snow and sea ice
ATMOSPHERIC CHEMISTRY AND PHYSICS Copernicus Publications 14:5 (2014) 2399-2417
Abstract:
Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are −4.4 (−13.2 to +10.7) ng g−1 for an earlier phase of AeroCom models (phase I), and +4.1 (−13.0 to +21.4) ng g−1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g−1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07–0.25) W m−2 and 0.18 (0.06–0.28) W m−2 in phase I and phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W m−2 for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic.Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations
Atmospheric Chemistry and Physics European Geosciences Union 14:22 (2014) 12465-12477
Abstract:
Atmospheric black carbon (BC) absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF). However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and the resulting distribution of BC concentration, are highly uncertain. In particular, long-range transport and processes affecting BC atmospheric lifetime are poorly understood. Here we discuss whether recent assessments may have overestimated present-day BC radiative forcing in remote regions. We compare vertical profiles of BC concentration from four recent aircraft measurement campaigns to simulations by 13 aerosol models participating in the AeroCom Phase II intercomparison. An atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in remote ocean regions, in line with other recent studies. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in AeroCom Phase II median direct BC forcing, from fossil fuel and biofuel burning, over the industrial era. The sensitivity of modelled forcing to BC vertical profile and lifetime highlights an urgent need for further flight campaigns, close to sources and in remote regions, to provide improved quantification of BC effects for use in climate policy.Processes limiting the emergence of detectable aerosol indirect effects on tropical warm clouds in global aerosol-climate model and satellite data
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY International Meteorological Institute in Stockholm 66:0 (2014)
Abstract:
We use data from simulations performed with the global aerosol-climate model ECHAM5-HAM to test the proposition that shipping emissions do not have a statistically significant effect on water clouds over tropical oceans on climate scales put forward in earlier satellite based work. We analyse a total of four sensitivity experiments, three of which employ global shipping emissions and one simulation which only employs shipping emissions in the mid-Atlantic Ocean. To ensure comparability to earlier results from observations, we sample the model data using a method previously applied to satellite data aimed at separating ‘clean’ from ‘polluted’ oceanic regions based on i) the location of main shipping routes and ii) wind direction at 10 m above sea level. The model simulations run with realistic present-day shipping emissions show changes in the lower tropospheric aerosol population attributable to shipping emissions across major shipping corridors over tropical oceans. However, we find the resulting effect on cloud properties to be non-distinguishable from natural gradients and variability, that is, gradients of cloud properties sampled across major shipping corridors over tropical oceans are very similar among those simulations. Our results therefore compare well to the earlier findings from satellite observations. Substantial changes of the aerosol population and cloud properties only occur when shipping emissions are increased 10-fold. We find that aerosol advection and rapid aerosol removal from the atmosphere play an important role in determining the non-significant response in i) column integrated aerosol properties and ii) cloud microphysical properties in the realistic simulations. Additionally, high variability and infrequent occurrence of simulated low-level clouds over tropical oceans in ECHAM5-HAM limit the development of aerosol indirect effects because i) in-cloud production of sulphate from ship-emitted sulphuric species via aqueous oxidation pathways is very low and ii) a possible observational signal is blurred out by high variability in simulated clouds. Our results highlight i) the importance of adequately accounting for atmospheric background conditions when determining climate forcings from observations and ii) the effectiveness of buffering mechanisms on micro- and macroscopic scales which limit the emergence of such climate forcings.A pathway analysis of global aerosol processes
ATMOSPHERIC CHEMISTRY AND PHYSICS 14:21 (2014) 11657-11686