Early Release Science of the exoplanet WASP-39b with JWST NIRISS.
Abstract:
The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy1-4. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality5-9. Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST. This spectrum spans 0.6-2.8 μm in wavelength and shows several water-absorption bands, the potassium resonance doublet and signatures of clouds. The precision and broad wavelength coverage of NIRISS/SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy-element enhancement ('metallicity') of about 10-30 times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-grey clouds with inhomogeneous coverageof the planet's terminator.Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H.
Abstract:
Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems1,2. Access to the chemical inventory of an exoplanet requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based3-5 and high-resolution ground-based6-8 facilities. Here we report the medium-resolution (R ≈ 600) transmission spectrum of an exoplanet atmosphere between 3 and 5 μm covering several absorption features for the Saturn-mass exoplanet WASP-39b (ref. 9), obtained with the Near Infrared Spectrograph (NIRSpec) G395H grating of JWST. Our observations achieve 1.46 times photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2 (28.5σ) and H2O (21.5σ), and identify SO2 as the source of absorption at 4.1 μm (4.8σ). Best-fit atmospheric models range between 3 and 10 times solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2, underscore the importance of characterizing the chemistry in exoplanet atmospheres and showcase NIRSpec G395H as an excellent mode for time-series observations over this critical wavelength range10.The Effect of Interior Heat Flux on the Atmospheric Circulation of Hot and Ultra-hot Jupiters
Top-of-the-atmosphere and Vertical Cloud Structure of a Fast-rotating Late T Dwarf
Cloud-convection feedback in brown dwarf atmospheres
Abstract:
Numerous observational evidence has suggested the presence of active meteorology in the atmospheres of brown dwarfs. A near-infrared brightness variability has been observed. Clouds have a major role in shaping the thermal structure and spectral properties of these atmospheres. The mechanism of such variability is still unclear, and neither 1D nor global circulation models can fully study this topic due to resolution. In this study, a convective-resolving model is coupled to gray-band radiative transfer in order to study the coupling between the convective atmosphere and the variability of clouds over a large temperature range with a domain of several hundred kilometers. Six types of clouds are considered, with microphysics including settling. The clouds are radiatively active through the Rosseland mean coefficient. Radiative cloud feedback can drive spontaneous atmospheric variability in both temperature and cloud structure, as modeled for the first time in three dimensions. Silicate clouds have the most effect on the thermal structure with the generation of a secondary convective layer in some cases, depending on the assumed particle size. Iron and aluminum clouds also have a substantial impact on the atmosphere. Thermal spectra were computed, and we find the strongest effect of the clouds is the smoothing of spectral features at optical wavelengths. Compared to observed L and T dwarfs on the color–magnitude diagram, the simulated atmospheres are redder for most of the cases. Simulations with the presence of cloud holes are closer to observations.