Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Jupiter's infrared image
What stir up Jupiter's unearthly jet streams and storms?
Credit: Gemini Observatory

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary Climate Dynamics
xianyu.tan@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory, room 209 G
My Personal Website
  • About
  • Research
  • Publications

Atmospheric circulation of brown dwarfs and directly imaged exoplanets driven by cloud radiative feedback: effects of rotation

Monthly Notices of the Royal Astronomical Society Oxford University Press 502:1 (2021) 678-699

Authors:

Xianyu Tan, Adam P Showman

Abstract:

Observations of brown dwarfs (BDs), free-floating planetary-mass objects, and directly imaged extrasolar giant planets (EGPs) exhibit rich evidence of large-scale weather. Cloud radiative feedback has been proposed as a potential mechanism driving the vigorous atmospheric circulation on BDs and directly imaged EGPs, and yet it has not been demonstrated in three-dimensional dynamical models at relevant conditions. Here, we present a series of atmospheric circulation models that self-consistently couple dynamics with idealized cloud formation and its radiative effects. We demonstrate that vigorous atmospheric circulation can be triggered and self-maintained by cloud radiative feedback. Typical isobaric temperature variation could reach over 100 K and horizontally averaged wind speed could be several hundreds of $\, {\rm m\, s^{-1}}$. The circulation is dominated by cloud-forming and clear-sky vortices that evolve over time-scales from several to tens of hours. The typical horizontal length-scale of dominant vortices is closed to the Rossby deformation radius, showing a linear dependence on the inverse of rotation rate. Stronger rotation tends to weaken vertical transport of vapour and clouds, leading to overall thinner clouds. Domain-mean outgoing radiative flux exhibits variability over time-scales of tens of hours due to the statistical evolution of storms. Different bottom boundary conditions in the models could lead to qualitatively different circulation near the observable layer. The circulation driven by cloud radiative feedback represents a robust mechanism generating significant surface inhomogeneity as well as irregular flux time variability. Our results have important implications for near-infrared (IR) colours of dusty BDs and EGPs, including the scatter in the near-IR colour–magnitude diagram and the viewing-geometry-dependent near-IR colours.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Atmospheric circulation of brown dwarfs and directly imaged exoplanets driven by cloud radiative feedback: global and equatorial dynamics

Monthly Notices of the Royal Astronomical Society Oxford University Press 502:2 (2021) 2198-2219

Authors:

Xianyu Tan, Adam P Showman

Abstract:

Brown dwarfs, planetary-mass objects and directly imaged giant planets exhibit significant observational evidence for active atmospheric circulation, raising critical questions about mechanisms driving the circulation, its fundamental nature and time variability. Our previous work has demonstrated the crucial role of cloud radiative feedback on driving a vigorous atmospheric circulation using local models that assume a Cartesian geometry and constant Coriolis parameters. In this study, we extend the models to a global geometry and explore properties of the global dynamics. We show that, under relatively strong dissipation in the bottom layers of the model, horizontally isotropic vortices are prevalent at mid-to-high latitudes while large-scale zonally propagating waves are dominant at low latitudes near the observable layers. The equatorial waves have both eastward and westward phase speeds, and the eastward components with typical velocities of a few hundred  m s−1 usually dominate the equatorial time variability. Lightcurves of the global simulations show variability with amplitudes from 0.5 per cent to a few percent depending on the rotation period and viewing angle. The time evolution of simulated lightcurves is critically affected by the equatorial waves, showing wave beating effects and differences in the lightcurve periodicity to the intrinsic rotation period. The vertical extent of clouds is the largest at the equator and decreases poleward due to the increasing influence of rotation with increasing latitude. Under weaker dissipation in the bottom layers, strong and broad zonal jets develop and modify wave propagation and lightcurve variability. Our modelling results help to qualitatively explain several features of observations of brown dwarfs and directly imaged giant planets, including puzzling time evolution of lightcurves, a slightly shorter period of variability in IR than in radio wavelengths, and the viewing angle dependence of variability amplitude and IR colors.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The atmospheric circulation of ultra-hot Jupiters

Astrophysical Journal American Astronomical Society 886:1 (2019) 1-20

Authors:

Xianyu Tan, T Komacek
More details from the publisher
Details from ORA
More details
Details from ArXiV

Convection Modeling of Pure-steam Atmospheres

ASTROPHYSICAL JOURNAL LETTERS 923:1 (2021) ARTN L15

Authors:

Xianyu Tan, Maxence Lefevre, Raymond T Pierrehumbert
More details from the publisher
Details from ORA
More details

Jet streams and tracer mixing in the atmospheres of brown dwarfs and isolated young giant planets

Monthly Notices of the Royal Astronomical Society Oxford University Press 511:4 (2022) 4861-4881

Abstract:

Observations of brown dwarfs and relatively isolated young extrasolar giant planets have provided unprecedented details to probe atmospheric dynamics in a new regime. Questions about mechanisms governing the global circulation and its fundamental nature remain to be completely addressed. Previous studies have shown that small-scale randomly varying thermal perturbations resulting from interactions between convection and the overlying stratified layers can drive zonal jet streams, waves, and turbulence. In this work, we improve upon our previous work by using a general circulation model coupled with a two-stream grey radiative transfer scheme to represent more realistic heating and cooling rates. We examine the formation of zonal jets and their time evolution, and vertical mixing of passive tracers including clouds and chemical species. Under relatively weak radiative and frictional dissipation, robust zonal jets with speeds up to a few hundred m s−1 are typical outcomes. The off-equatorial jets tend to be pressure independent, while the equatorial jets exhibit significant vertical wind shear. On the other hand, models with strong dissipation inhibit the jet formation and leave isotropic turbulence in off-equatorial regions. Quasi-periodic oscillations of the equatorial flow with periods ranging from tens of days to months are prevalent at relatively low atmospheric temperatures. Submicron cloud particles can be easily transported to several scale heights above the condensation level, while larger particles form thinner layers. Cloud decks are significantly inhomogeneous near their cloud tops. Chemical tracers with chemical time-scales >105 s can be driven out of equilibrium. The equivalent vertical diffusion coefficients, Kzz, for the global-mean tracer transport are diagnosed from our models and are typically on the order of 1–102 m2 s−1. Finally, we derive an analytic estimation of Kzz for different types of tracers under relevant conditions.
More details from the publisher
Details from ORA

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet