Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Angela Taylor

Professor of Experimental Astrophysics

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology
  • Instrumentation

Sub department

  • Astrophysics

Research groups

  • Experimental radio cosmology
  • C-BASS
  • The Square Kilometre Array (SKA)
Angela.Taylor@physics.ox.ac.uk
Telephone: 01865 (2)73297
Denys Wilkinson Building, room 753
  • About
  • Publications

The C-Band All-Sky Survey (C-BASS): Digital backend for the northern survey

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2019)

Authors:

MA Stevenson, TJ Pearson, Michael E Jones, CJ Copley, C Dickinson, JJ John, OG King, SJC Muchovej, Angela C Taylor
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

The C-Band All-Sky survey (C-BASS)

Proceedings of the 53rd Rencontres de Moriond, Cosmology 2018 ARISF (2018) 137-140

Abstract:

The C-Band All-Sky survey (C-BASS) is an experiment to image the whole sky in intensity and polarization at 5 GHz. The primary aim of C-BASS is to provide low-frequency all-sky maps of the Galactic emission which will enable accurate component separation analysis of both existing and future CMB intensity and polarization imaging surveys. Here we present an overview of the experiment and an update on the current status of observations. We present simulation results showing the expected improvement in the recovery of CMB and foreground signals when including C-BASS data as an additional low-frequency channel, both for intensity and polarization. We also present preliminary results from the northern part of the sky survey.
Details from ORA
Details from ArXiV

The C-Band All-Sky Survey (C-BASS): design and capabilities

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 480:3 (2018) 3224-3242

Authors:

Michael E Jones, Angela C Taylor, Moumita Aich, CJ Copley, H Cynthia Chiang, RJ Davis, C Dickinson, RDP Grumitt, Yaser Hafez, Heiko M Heilgendorff, CM Holler, MO Irfan, Luke RP Jew, JJ John, J Jonas, OG King, JP Leahy, J Leech, EM Leitch, SJC Muchovej, TJ Pearson, MW Peel, ACS Readhead, Jonathan Sievers, MA Stevenson, J Zuntz
More details from the publisher
Details from ORA
More details
Details from ArXiV

The state-of-play of Anomalous Microwave Emission (AME) research

New Astronomy Reviews Elsevier (2018)

Authors:

C Dickinson, Y Ali-Haïmoud, A Barr, ES Battistelli, A Bell, L Bernstein, S Cassassus, K Cleary, BT Draine, R Génova-Santos, Harper, B Hensley, Jaz R Hill-Valler, T Hoang, FP Israel, Luke Jew, A Lazarian, JP Leahy, Jamie Leech, CH López-Carabello, I McDonald, EJ Murphy, T Onaka, R Paladini, MW Peel, Y Perrott, F Poidevin, ACS Readhead, J-A Rubiño-Martín, Angela C Taylor, CT Tibbs, M Todorovic, M Vidal

Abstract:

Anomalous Microwave Emission (AME) is a component of diffuse Galactic radiation observed at frequencies in the range ≈10–60 GHz. AME was first detected in 1996 and recognised as an additional component of emission in 1997. Since then, AME has been observed by a range of experiments and in a variety of environments. AME is spatially correlated with far-IR thermal dust emission but cannot be explained by synchrotron or free–free emission mechanisms, and is far in excess of the emission contributed by thermal dust emission with the powerlaw opacity consistent with the observed emission at sub-mm wavelengths. Polarization observations have shown that AME is very weakly polarized ( ≲ 1 %). The most natural explanation for AME is rotational emission from ultra-small dust grains (“spinning dust”), first postulated in 1957. Magnetic dipole radiation from thermal fluctuations in the magnetization of magnetic grain materials may also be contributing to the AME, particularly at higher frequencies ( ≳ 50 GHz). AME is also an important foreground for Cosmic Microwave Background analyses. This paper presents a review and the current state-of-play in AME research, which was discussed in an AME workshop held at ESTEC, The Netherlands, June 2016.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Observations of Galactic star-forming regions with the Cosmic Background Imager at 31 GHz

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 453:2 (2015) 2082-2093

Authors:

C Demetroullas, C Dickinson, D Stamadianos, SE Harper, K Cleary, Michael E Jones, TJ Pearson, ACS Readhead, Angela C Taylor
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet