Author Correction: Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells
Nature Energy Springer Nature 9:10 (2024) 1322-1322
Coupling Photogeneration with Thermodynamic Modeling of Light-Induced Alloy Segregation Enables the Identification of Stabilizing Dopants
Chemistry of Materials American Chemical Society (ACS) 36:15 (2024) 7438-7450
Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells
Nature Energy Springer Nature 9:7 (2024) 779-792
Abstract:
The deposition of large ammonium cations onto perovskite surfaces to passivate defects and reduce contact recombination has enabled exceptional efficiency and stability in perovskite solar cells. These ammonium cations can either assemble as a thin molecular layer at the perovskite surface or induce the formation of a low-dimensional (usually two-dimensional) perovskite capping layer on top of the three-dimensional perovskite. The formation of these two different structures is often overlooked by researchers, although they impact differently on device operation. In this Review, we seek to distinguish between these two passivation layers. We consider the conditions needed for the formation of low-dimensional perovskite and the electronic properties of the two structures. We discuss the mechanisms by which each method improves photovoltaic efficiency and stability. Finally, we summarize the knowledge gaps that need to be addressed to better understand and optimize ammonium cation-based passivation strategies.Long-range order enabled stability in quantum dot light-emitting diodes
Nature Springer Nature 629:8012 (2024) 586-591
Abstract:
Light-emitting diodes (LEDs) based on perovskite quantum dots (QDs) have produced external quantum efficiencies (EQEs) of more than 25% with narrowband emission1,2, but these LEDs have limited operating lifetimes. We posit that poor long-range ordering in perovskite QD films—variations in dot size, surface ligand density and dot-to-dot stacking—inhibits carrier injection, resulting in inferior operating stability because of the large bias required to produce emission in these LEDs. Here we report a chemical treatment to improve the long-range order of perovskite QD films: the diffraction intensity from the repeating QD units increases three-fold compared with that of controls. We achieve this using a synergistic dual-ligand approach: an iodide-rich agent (aniline hydroiodide) for anion exchange and a chemically reactive agent (bromotrimethylsilane) that produces a strong acid that in situ dissolves smaller QDs to regulate size and more effectively removes less conductive ligands to enable compact, uniform and defect-free films. These films exhibit high conductivity (4 × 10−4 S m−1), which is 2.5-fold higher than that of the control, and represents the highest conductivity recorded so far among perovskite QDs. The high conductivity ensures efficient charge transportation, enabling red perovskite QD-LEDs that generate a luminance of 1,000 cd m−2 at a record-low voltage of 2.8 V. The EQE at this luminance is more than 20%. Furthermore, the stability of the operating device is 100 times better than previous red perovskite LEDs at EQEs of more than 20%.Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands
Science American Association for the Advancement of Science 384:6692 (2024) 189-193