Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr. Sam Teale

Junior Research Fellow

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
sam.teale@physics.ox.ac.uk
Robert Hooke Building
  • About
  • Publications

Author Correction: Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells

Nature Energy Springer Nature 9:10 (2024) 1322-1322

Authors:

Sam Teale, Matteo Degani, Bin Chen, Edward H Sargent, Giulia Grancini
More details from the publisher
More details

Coupling Photogeneration with Thermodynamic Modeling of Light-Induced Alloy Segregation Enables the Identification of Stabilizing Dopants

Chemistry of Materials American Chemical Society (ACS) 36:15 (2024) 7438-7450

Authors:

Tong Zhu, Luke Grater, Sam Teale, Eugenia S Vasileiadou, Jonathan Sharir-Smith, Bin Chen, Mercouri G Kanatzidis, Edward H Sargent
More details from the publisher
More details

Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells

Nature Energy Springer Nature 9:7 (2024) 779-792

Authors:

Sam Teale, Matteo Degani, Bin Chen, Edward H Sargent, Giulia Grancini

Abstract:

The deposition of large ammonium cations onto perovskite surfaces to passivate defects and reduce contact recombination has enabled exceptional efficiency and stability in perovskite solar cells. These ammonium cations can either assemble as a thin molecular layer at the perovskite surface or induce the formation of a low-dimensional (usually two-dimensional) perovskite capping layer on top of the three-dimensional perovskite. The formation of these two different structures is often overlooked by researchers, although they impact differently on device operation. In this Review, we seek to distinguish between these two passivation layers. We consider the conditions needed for the formation of low-dimensional perovskite and the electronic properties of the two structures. We discuss the mechanisms by which each method improves photovoltaic efficiency and stability. Finally, we summarize the knowledge gaps that need to be addressed to better understand and optimize ammonium cation-based passivation strategies.
More details from the publisher
Details from ORA
More details

Long-range order enabled stability in quantum dot light-emitting diodes

Nature Springer Nature 629:8012 (2024) 586-591

Authors:

Ya-Kun Wang, Haoyue Wan, Sam Teale, Luke Grater, Feng Zhao, Zhongda Zhang, Hong-Wei Duan, Muhammad Imran, Sui-Dong Wang, Sjoerd Hoogland, Liang-Sheng Liao

Abstract:

Light-emitting diodes (LEDs) based on perovskite quantum dots (QDs) have produced external quantum efficiencies (EQEs) of more than 25% with narrowband emission1,2, but these LEDs have limited operating lifetimes. We posit that poor long-range ordering in perovskite QD films—variations in dot size, surface ligand density and dot-to-dot stacking—inhibits carrier injection, resulting in inferior operating stability because of the large bias required to produce emission in these LEDs. Here we report a chemical treatment to improve the long-range order of perovskite QD films: the diffraction intensity from the repeating QD units increases three-fold compared with that of controls. We achieve this using a synergistic dual-ligand approach: an iodide-rich agent (aniline hydroiodide) for anion exchange and a chemically reactive agent (bromotrimethylsilane) that produces a strong acid that in situ dissolves smaller QDs to regulate size and more effectively removes less conductive ligands to enable compact, uniform and defect-free films. These films exhibit high conductivity (4 × 10−4 S m−1), which is 2.5-fold higher than that of the control, and represents the highest conductivity recorded so far among perovskite QDs. The high conductivity ensures efficient charge transportation, enabling red perovskite QD-LEDs that generate a luminance of 1,000 cd m−2 at a record-low voltage of 2.8 V. The EQE at this luminance is more than 20%. Furthermore, the stability of the operating device is 100 times better than previous red perovskite LEDs at EQEs of more than 20%.
More details from the publisher
Details from ORA
More details
More details
More details

Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands

Science American Association for the Advancement of Science 384:6692 (2024) 189-193

Authors:

Hao Chen, Cheng Liu, Jian Xu, Aidan Maxwell, Wei Zhou, Yi Yang, Qilin Zhou, Abdulaziz SR Bati, Haoyue Wan, Zaiwei Wang, Lewei Zeng, Junke Wang, Peter Serles, Yuan Liu, Sam Teale, Yanjiang Liu, Makhsud I Saidaminov, Muzhi Li, Nicholas Rolston, Sjoerd Hoogland, Tobin Filleter, Mercouri G Kanatzidis, Bin Chen, Zhijun Ning, Edward H Sargent

Abstract:

Inverted (pin) perovskite solar cells (PSCs) afford improved operating stability in comparison to their nip counterparts but have lagged in power conversion efficiency (PCE). The energetic losses responsible for this PCE deficit in pin PSCs occur primarily at the interfaces between the perovskite and the charge-transport layers. Additive and surface treatments that use passivating ligands usually bind to a single active binding site: This dense packing of electrically resistive passivants perpendicular to the surface may limit the fill factor in pin PSCs. We identified ligands that bind two neighboring lead(II) ion (Pb2+) defect sites in a planar ligand orientation on the perovskite. We fabricated pin PSCs and report a certified quasi–steady state PCE of 26.15 and 24.74% for 0.05– and 1.04–square centimeter illuminated areas, respectively. The devices retain 95% of their initial PCE after 1200 hours of continuous 1 sun maximum power point operation at 65°C.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet