Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr. Sam Teale

Junior Research Fellow

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
sam.teale@physics.ox.ac.uk
Robert Hooke Building
  • About
  • Publications

Publisher Correction: Regulating surface potential maximizes voltage in all-perovskite tandems.

Nature 620:7973 (2023) E15

Authors:

Hao Chen, Aidan Maxwell, Chongwen Li, Sam Teale, Bin Chen, Tong Zhu, Esma Ugur, George Harrison, Luke Grater, Junke Wang, Zaiwei Wang, Lewei Zeng, So Min Park, Lei Chen, Peter Serles, Rasha Abbas Awni, Biwas Subedi, Xiaopeng Zheng, Chuanxiao Xiao, Nikolas J Podraza, Tobin Filleter, Cheng Liu, Yi Yang, Joseph M Luther, Stefaan De Wolf, Mercouri G Kanatzidis, Yanfa Yan, Edward H Sargent
More details from the publisher
More details
More details

Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells.

Science (New York, N.Y.) 381:6654 (2023) 209-215

Authors:

So Min Park, Mingyang Wei, Jian Xu, Harindi R Atapattu, Felix T Eickemeyer, Kasra Darabi, Luke Grater, Yi Yang, Cheng Liu, Sam Teale, Bin Chen, Hao Chen, Tonghui Wang, Lewei Zeng, Aidan Maxwell, Zaiwei Wang, Keerthan R Rao, Zhuoyun Cai, Shaik M Zakeeruddin, Jonathan T Pham, Chad M Risko, Aram Amassian, Mercouri G Kanatzidis, Kenneth R Graham, Michael Grätzel, Edward H Sargent

Abstract:

Perovskite solar cells (PSCs) consisting of interfacial two- and three-dimensional heterostructures that incorporate ammonium ligand intercalation have enabled rapid progress toward the goal of uniting performance with stability. However, as the field continues to seek ever-higher durability, additional tools that avoid progressive ligand intercalation are needed to minimize degradation at high temperatures. We used ammonium ligands that are nonreactive with the bulk of perovskites and investigated a library that varies ligand molecular structure systematically. We found that fluorinated aniliniums offer interfacial passivation and simultaneously minimize reactivity with perovskites. Using this approach, we report a certified quasi-steady-state power-conversion efficiency of 24.09% for inverted-structure PSCs. In an encapsulated device operating at 85°C and 50% relative humidity, we document a 1560-hour T85 at maximum power point under 1-sun illumination.
More details from the publisher
More details
More details

Sterically Suppressed Phase Segregation in 3D Hollow Mixed-Halide Wide Band Gap Perovskites.

The journal of physical chemistry letters 14:26 (2023) 6157-6162

Authors:

Luke Grater, Mingcong Wang, Sam Teale, Suhas Mahesh, Aidan Maxwell, Yanjiang Liu, So Min Park, Bin Chen, Frédéric Laquai, Mercouri G Kanatzidis, Edward H Sargent

Abstract:

Band gap tuning in mixed-halide perovskites enables efficient multijunction solar cells and LEDs. However, these wide band gap perovskites, which contain a mixture of iodide and bromide ions, are known to phase segregate under illumination, introducing voltage losses that limit stability. Previous studies have employed inorganic perovskites, halide alloys, and grain/interface passivation to minimize halide segregation, yet photostability can be further advanced. By focusing on the role of halide vacancies in anion migration, one expects to be able to erect local barriers to ion migration. To achieve this, we employ a 3D "hollow" perovskite structure, wherein a molecule that is otherwise too large for the perovskite lattice is incorporated. The amount of hollowing agent, ethane-1,2-diammonium dihydroiodide (EDA), varies the density of the hollow sites. Photoluminescence measurements reveal that 1% EDA in the perovskite bulk can stabilize a 40% bromine mixed-halide perovskite at 1 sun illumination intensity. These, along with capacitance-frequency measurements, suggest that hollow sites limit the mobility of the halide vacancies.
More details from the publisher
More details
More details

Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems

Nature Energy Springer Nature 8:6 (2023) 610-620

Authors:

Tiantian Li, Jian Xu, Renxing Lin, Sam Teale, Hongjiang Li, Zhou Liu, Chenyang Duan, Qian Zhao, Ke Xiao, Pu Wu, Bin Chen, Sheng Jiang, Shaobing Xiong, Haowen Luo, Sushu Wan, Ludong Li, Qinye Bao, Yuxi Tian, Xueping Gao, Jin Xie, Edward H Sargent, Hairen Tan
More details from the publisher
More details

Suppressed phase segregation for triple-junction perovskite solar cells.

Nature 618:7963 (2023) 74-79

Authors:

Zaiwei Wang, Lewei Zeng, Tong Zhu, Hao Chen, Bin Chen, Dominik J Kubicki, Adam Balvanz, Chongwen Li, Aidan Maxwell, Esma Ugur, Roberto Dos Reis, Matthew Cheng, Guang Yang, Biwas Subedi, Deying Luo, Juntao Hu, Junke Wang, Sam Teale, Suhas Mahesh, Sasa Wang, Shuangyan Hu, Eui Dae Jung, Mingyang Wei, So Min Park, Luke Grater, Erkan Aydin, Zhaoning Song, Nikolas J Podraza, Zheng-Hong Lu, Jinsong Huang, Vinayak P Dravid, Stefaan De Wolf, Yanfa Yan, Michael Grätzel, Merx G Kanatzidis, Edward H Sargent

Abstract:

The tunable bandgaps and facile fabrication of perovskites make them attractive for multi-junction photovoltaics1,2. However, light-induced phase segregation limits their efficiency and stability3-5: this occurs in wide-bandgap (>1.65 electron volts) iodide/bromide mixed perovskite absorbers, and becomes even more acute in the top cells of triple-junction solar photovoltaics that require a fully 2.0-electron-volt bandgap absorber2,6. Here we report that lattice distortion in iodide/bromide mixed perovskites is correlated with the suppression of phase segregation, generating an increased ion-migration energy barrier arising from the decreased average interatomic distance between the A-site cation and iodide. Using an approximately 2.0-electron-volt rubidium/caesium mixed-cation inorganic perovskite with large lattice distortion in the top subcell, we fabricated all-perovskite triple-junction solar cells and achieved an efficiency of 24.3 per cent (23.3 per cent certified quasi-steady-state efficiency) with an open-circuit voltage of 3.21 volts. This is, to our knowledge, the first reported certified efficiency for perovskite-based triple-junction solar cells. The triple-junction devices retain 80 per cent of their initial efficiency following 420 hours of operation at the maximum power point.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet