Engineering technology development in the UK for HARMONI: An E-ELT first light instrument
Proceedings of SPIE - The International Society for Optical Engineering 8450 (2012)
Abstract:
HARMONI is an integral field spectrograph working at visible and near-infrared wavelengths, over a range of spatial scales from ground layer corrected to fully diffraction-limited. The instrument has been chosen to be part of the first-light complement at the European Extremely Large Telescope (E-ELT1). This paper describes the engineering technology development being undertaken at the UKATC and Oxford to support E-ELT HARMONI2 instrument in its pre-phase-B stage. This includes the description of technology demonstrators for a tracking optical de-rotator to be located within the instrument vacuum vessel, a cryogenic shutter and a compact thermally compensating lens mount system. In addition the material testing facilities available at the UKATC are described which will enable the measurement of material and bolted joint thermal conductivities to 4K and friction/wear properties of material combinations to 20K. This work is undertaken to improve the instrument performance and reduce technical, cost and schedule risk. © 2012 SPIE.Multiplexing 32,000 spectra onto 8 detectors: The HARMONI field splitting, image slicing and wavelength selecting optics
Proceedings of SPIE - The International Society for Optical Engineering 8450 (2012)
Abstract:
HARMONI, the High Angular Resolution Monolithic Optical & Near-infrared Integral field spectrograph is one of two first-light instruments for the European Extremely Large Telescope. Over a 256x128 pixel field-of-view HARMONI will simultaneously measure approximately 32,000 spectra. Each spectrum is about 4000 spectral pixels long, and covers a selectable part of the 0.47-2.45 μm wavelength range at resolving powers of either R=4000, 10000, or 20000. All 32,000 spectra are imaged onto eight HAWAII4RG detectors using a multiplexing scheme that divides the input field into four sub-fields, each imaged onto one image slicer that in turn re-arranges a single sub-field into two long exit slits feeding one spectrograph each. In total we require eight spectrographs, each with one HAWAII4RG detector. A system of articulated and exchangeable fold-mirrors and VPH gratings allows one to select different spectral resolving powers and wavelength ranges of interest while keeping a fixed geometry between the spectrograph collimator and camera avoiding the need for an articulated grating and camera. In this paper we describe both the field splitting and image slicing optics as well as the optics that will be used to select both spectral resolving power and wavelength range. © 2012 SPIE.The opto-mechanical design of HARMONI: A first light integral field spectrograph for the E-ELT
Proceedings of SPIE - The International Society for Optical Engineering 8446 (2012)
Abstract:
HARMONI is a visible and near-IR integral field spectrograph, providing the E-ELT's spectroscopic capability at first light. It obtains simultaneous spectra of 32000 spaxels, at a range of resolving powers from R∼4000 to R∼20000, covering the wavelength range from 0.47 to 2.45 ìm. The 256 ? 128 spaxel field of view has four different plate scales, with the coarsest scale (40 mas) providing a 5? ? 10? FoV, while the finest scale is a factor of 10 finer (4mas). We describe the opto-mechanical design of HARMONI, prior to the start of preliminary design, including the main subsystems - namely the image de-rotator, the scale-changing optics, the splitting and slicing optics, and the spectrographs. We also present the secondary guiding system, the pupil imaging optics, the field and pupil stops, the natural guide star wavefront sensor, and the calibration unit. © 2012 SPIE.An oxford swift integral field spectroscopy study of 14 early-type galaxies in the coma cluster
Monthly Notices of the Royal Astronomical Society 425:2 (2012) 1521-1526
Abstract:
As a demonstration of the capabilities of the new Oxford SWIFT integral field spectrograph, we present first observations for a set of 14 early-type galaxies in the core of the Coma cluster. Our data consist of I- and z-band spatially resolved spectroscopy obtained with the Oxford SWIFT spectrograph, combined with r-band photometry from the Sloan Digital Sky Survey archive for 14 early-type galaxies. We derive spatially resolved kinematics for all objects from observations of the calcium triplet absorption features at ∼8500Å. Using this kinematic information we classify galaxies as either fast rotators or slow rotators. We compare the fraction of fast and slow rotators in our sample, representing the densest environment in the nearby Universe, to results from the ATLAS3D survey, finding that the slow rotator fraction is ∼50per cent larger in the core of the Coma cluster than in the volume-limited ATLAS3D sample, a 1.2σ increase given our selection criteria. Comparing our sample to the Virgo cluster core only (which is 24 times less dense than the Coma core) we find no evidence of an increase in the slow rotator fraction. Combining measurements of the effective velocity dispersion σe with the photometric data we determine the Fundamental Plane for our sample of galaxies. We find that the use of the average velocity dispersion within 1 effective radius, σe, reduces the residuals by 13per cent with respect to comparable studies using central velocity dispersions, consistent with other recent integral field Fundamental Plane determinations. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.Direct Detection of Nearby Habitable Zone Planets Using Slicer Based Integral Field Spectrographs and EPICS on the E-ELT
Proceedings of the International Astronomical Union Cambridge University Press (CUP) 8:S293 (2012) 442-444