Seyfert Activity and Nuclear Star Formation in the Circinus Galaxy
ArXiv astro-ph/9709091 (1997)
Abstract:
We present high angular resolution (0".15-0".5) near infrared images and spectroscopy of the Circinus galaxy, the closest Seyfert 2 galaxy known. The data reveal a non-stellar nuclear source at 2.2 microns. The coronal line region and the hot molecular gas emission extend for 20-50 pc in the ionization cone. The data do not show evidence for a point-like concentration of dark mass; we set an upper limit of 4*10^6 Mo to the mass of a putative black hole. We find evidence for a young nuclear stellar population, with typical ages between 4*10^7 and 1.5*10^8 yrs. The luminosity of the starburst inside a few hundred pc is comparable to the intrinsic luminosity of the Seyfert nucleus, and the two of them together account for most of the observed bolometric luminosity of the galaxy. Within the central 12 pc the starburst has an age of about 7*10^7 yrs and radiates about 2% of the luminosity of the active nucleus. We discuss the implications of these results for models that have been proposed for the starburst-AGN connection.Near-infrared integral field spectroscopy of markarian 231
Astrophysical Journal 476:1 PART I (1997) 98-104
Abstract:
The ultraluminous infrared Seyfert 1 galaxy Mrk 231 has been spectrally imaged in the K band with the new three-dimensional MPE integral field spectrometer. The combined images of the H2 emission lines show, for the first time in an ultraluminous infrared galaxy, the presence of an extended circumnuclear structure of hot molecular gas. The H2 emitting region has a size of ∼2.4 kpc and a hot molecular gas mass MH2hot ∼ 2 × 104 M⊙. The H2 emission-line ratios indicate that the gas is most likely thermally excited. If as in NGC 7469 star formation is associated with the H2 emission, the starburst would have a far-IR luminosity LFIR ∼ 1 × 1012 L⊙. This value represents an upper limit, since a fraction of the hot molecular gas may be excited by the radiation field emerging from the nucleus. The K-band three-dimensional data cube also shows for the first time the presence of extended narrow Paα emission blueshifted by ∼1400 km s-1 with respect to the systemic velocity, and located ∼0.6 kpc northwest of the nucleus. The detection of CO absorption bands with a spatial distribution peaking on the K-band continuum provides evidence for a central stellar concentration. The low CO spectroscopic index indicates, however, dilution by hot dust emission or by a nonthermal active galactic nucleus. The Paα/Hα ratio confirms previous extinction measurements based on Balmer line ratios, i.e., visual extinction of AV ∼ 2.0-6.6 mag. The quasar-type nucleus of Mrk 231 should then be transparent at 2 μm and also in hard X-rays. A weak nuclear He I λ2.058 μm (He I/Paα = 0.032) is detected, and no detection of [Si VI] λ1.962 μm is made, placing an upper limit of 4 × 10-18 Wm-2 for the coronal gas emission. The ionizing source could either be a far-UV and X-ray quiet quasar or else a nuclear starburst with an upper mass limit ≥60 M⊙. © 1997. The American Astronomical Society. All rights reserved.The nuclear stellar core, the hot dust source, and the location of the nucleus of NGC 1068
Astrophysical Journal 490:1 PART I (1997) 238-246
Abstract:
We present new near-infrared speckle and adaptive optics imaging and integral field spectroscopy of the nuclear region of NGC 1068. Ninety-four percent of the K-band light in the central 1" originates from a ≤30 milliarcsecond diameter source whose position we determine to coincide within ± 0''15 with the apex of the cone structure seen in the optical narrow emission lines, as well as the location of the flat spectrum radio component SI and the 12 μm emission peak. We interpret the compact source as hot dust near the sublimation temperature within ∼ 1 pc of the true nucleus of the galaxy. The remaining 6% of the light in the central 1″ comes from a moderately extincted stellar core centered on the nuclear position and of intrinsic size ∼50 pc. We show that this nuclear stellar core is probably 5-16 × 108 yr in age and contributes at least 7% of the total nuclear luminosity of ~1 × 1011 L⊙. © 1997. The American Astronomical Society. All rights reserved.3D - A new generation imaging spectrometer
P SOC PHOTO-OPT INS 2871 (1997) 1179-1186
Abstract:
3D is a new type of a highly sensitive near-infrared integral field spectrometer developed at MPE. It has been designed to multiplex spectral as well as spatial information thus obtaining a full data cube in a single integration. At a spectral resolution between 1000 and 2000 and a field of view of 16 x 16 pixels, optimized for subarcsecond spatial resolution imaging spectroscopy, it has a much higher efficiency compared to conventional techniques. Outfitting one of the VLTs with a near-IR 3D type instrument will provide a powerful tool for diffraction-limited integral field spectroscopic research, in particular on faint high-z galaxies in the early universe. The basic design, recent upgrades as well as plans for a possible VLT-3D instrument are presented.High-resolution near-infrared observations of NGC 1068
ASTROPHYS SPACE SCI 248:1-2 (1997) 295-300