The aperture interchange module (AIM) diffraction limited NIR spectroscopy with 3D and ALFA
P SOC PHOTO-OPT INS 3354 (1998) 222-231
Abstract:
The powerful tools of integral field spectroscopy and adaptive optics have made great contributions to the progress in astronomy in recent years. The combined use of these techniques now enables spectroscopy in the near infrared close to the telescope diffraction limit. This will provide new and interesting insights into a variety of objects such as AGNs, QSOs, circumstellar disks around highly extincted YSOs, etc.Spectroscopy at or close to the telescope diffraction limit has some caveats which one has to be aware of when designing the instruments so as to maintain the maximum possible throughput and to optimize spectral resolution. Astronomical campaigns with our H - and K - bend Integral Field Array Spectrograph 3D ( Weitzel ct al.(1)) in combination with the Laser Guide Star Adaptive Optics System ALFA ( Hippler et al.(2), Quirrenbach et al.(3) Glindemann et al.(4)) at the 3.5-m telescope at Calar Alto require special observational techniques in order to make the most efficient use of the observing time available. Chopping by moving the telescope to do background subtraction makes it necessary to relock the A.O. system on the guide star after moving the telescope back to source. This procedure is usually rather time consuming. The Aperture Interchange Module ( AIM), which we present here, enables us to perform chopping between source and blank sky while keeping the telescope fixed at a certain point in the sky. For this purpose AIM uses two different optical channels. The ON channel always paints to the center of the 3'ALFA FOV, picking off a FOV of roughly 4" x 4''. With the OFF channel one can choose any offcenter position within the ALFA. FOV execpt a central obscuration of 38"diameter. The AIM optics are designed in such a way that the optical pathlengths for the on and off- axis positions are kept equal. AIM also includes a scale changer which magnifies the scale from 0."25 / pix to 0."07 / pix. The 3D spectrometer itself is equipped with two interchangeable grisms, so that one can choose between H- and K- bands and between spectral resolutions of 1100 and 2100. The commissioning run of AIM together with 3D and ALFA took place in July 1997 at the 3.5m Calar Alto telescope.What Powers Ultra-luminous IRAS Galaxies?
ArXiv astro-ph/9711255 (1997)
Abstract:
We present an ISO SWS and ISOPHOT-S, mid-infrared spectroscopic survey of 15 ultra-luminous IRAS galaxies. We combine the survey results with a detailed case study, based on near-IR and mm imaging spectroscopy, of one of the sample galaxies (UGC 5101). We compare the near- and mid-IR characteristics of these ultra-luminous galaxies to ISO and literature data of thirty starburst and active galactic nuclei (AGN), template galaxies. We find that 1) 70-80% of the ultra-luminous IRAS galaxies in our sample are predominantly powered by recently formed massive stars. 20-30% are powered by a central AGN. These conclusions are based on a new infrared 'diagnostic diagram' involving the ratio of high to low excitation mid-IR emission lines on the one hand, and on the strength of the 7.7um PAH feature on the other hand. 2) at least half of the sources probably have simultaneously an active nucleus and starburst activity in a 1-2 kpc diameter circum-nuclear disk/ring. 3) the mid-infrared emitting regions are highly obscured. After correction for these extinctions, we estimate that the star forming regions in ULIRGs have ages between 10^7 and 10^8 years, similar to but somewhat larger than those found in lower luminosity starburst galaxies. 4) in the sample we have studied there is no obvious trend for the AGN component to dominate in the most compact, and thus most advanced mergers. Instead, at any given time during the merger evolution, the time dependent compression of the circum-nuclear interstellar gas, the accretion rate onto the central black hole and the associated radiation efficiency may determine whether star formation or AGN activity dominates the luminosity of the system.Seyfert Activity and Nuclear Star Formation in the Circinus Galaxy
ArXiv astro-ph/9709091 (1997)
Abstract:
We present high angular resolution (0".15-0".5) near infrared images and spectroscopy of the Circinus galaxy, the closest Seyfert 2 galaxy known. The data reveal a non-stellar nuclear source at 2.2 microns. The coronal line region and the hot molecular gas emission extend for 20-50 pc in the ionization cone. The data do not show evidence for a point-like concentration of dark mass; we set an upper limit of 4*10^6 Mo to the mass of a putative black hole. We find evidence for a young nuclear stellar population, with typical ages between 4*10^7 and 1.5*10^8 yrs. The luminosity of the starburst inside a few hundred pc is comparable to the intrinsic luminosity of the Seyfert nucleus, and the two of them together account for most of the observed bolometric luminosity of the galaxy. Within the central 12 pc the starburst has an age of about 7*10^7 yrs and radiates about 2% of the luminosity of the active nucleus. We discuss the implications of these results for models that have been proposed for the starburst-AGN connection.Near-infrared integral field spectroscopy of markarian 231
Astrophysical Journal 476:1 PART I (1997) 98-104
Abstract:
The ultraluminous infrared Seyfert 1 galaxy Mrk 231 has been spectrally imaged in the K band with the new three-dimensional MPE integral field spectrometer. The combined images of the H2 emission lines show, for the first time in an ultraluminous infrared galaxy, the presence of an extended circumnuclear structure of hot molecular gas. The H2 emitting region has a size of ∼2.4 kpc and a hot molecular gas mass MH2hot ∼ 2 × 104 M⊙. The H2 emission-line ratios indicate that the gas is most likely thermally excited. If as in NGC 7469 star formation is associated with the H2 emission, the starburst would have a far-IR luminosity LFIR ∼ 1 × 1012 L⊙. This value represents an upper limit, since a fraction of the hot molecular gas may be excited by the radiation field emerging from the nucleus. The K-band three-dimensional data cube also shows for the first time the presence of extended narrow Paα emission blueshifted by ∼1400 km s-1 with respect to the systemic velocity, and located ∼0.6 kpc northwest of the nucleus. The detection of CO absorption bands with a spatial distribution peaking on the K-band continuum provides evidence for a central stellar concentration. The low CO spectroscopic index indicates, however, dilution by hot dust emission or by a nonthermal active galactic nucleus. The Paα/Hα ratio confirms previous extinction measurements based on Balmer line ratios, i.e., visual extinction of AV ∼ 2.0-6.6 mag. The quasar-type nucleus of Mrk 231 should then be transparent at 2 μm and also in hard X-rays. A weak nuclear He I λ2.058 μm (He I/Paα = 0.032) is detected, and no detection of [Si VI] λ1.962 μm is made, placing an upper limit of 4 × 10-18 Wm-2 for the coronal gas emission. The ionizing source could either be a far-UV and X-ray quiet quasar or else a nuclear starburst with an upper mass limit ≥60 M⊙. © 1997. The American Astronomical Society. All rights reserved.The nuclear stellar core, the hot dust source, and the location of the nucleus of NGC 1068
Astrophysical Journal 490:1 PART I (1997) 238-246